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ABSTRACT 

This paper investigates the efficiency of the 

Parametric Accelerated Over-Relaxation 

(PAOR) method for solving large-scale linear 

systems with partitioned matrix structures. An 

8×8 matrix example is used to compare PAOR 

against classical iterative techniques including 

Jacobi, Gauss-Seidel, Successive Over-

Relaxation (SOR), and Accelerated Over-

Relaxation (AOR). Artificial Intelligence (AI) 

and Machine Learning (ML) are incorporated 

to predict convergence trends and estimate 

error bounds. Results show that PAOR 

achieves faster convergence and improved 

stability in partitioned systems when 

optimized parameters are selected using ML 

techniques. 

I. INTRODUCTION 

Iterative methods play a vital role in solving 

linear systems in scientific computing. Among 

them, PAOR extends traditional AOR by 

tuning both relaxation and acceleration 

parameters for optimal performance. While 

these methods are generally applied to square 

matrices, many real-world problems feature 

structured or partitioned systems, such as 

block-diagonal or block-tridiagonal 

forms.This paper focuses on applying PAOR 

to partitioned matrices and compares its 

convergence behavior with Jacobi, Gauss-

Seidel, SOR, and AOR methods. We 

incorporate ML regression models to analyze 

error propagation and recommend optimal 

parameters. 

 

 

 

II. THEORETICAL BACKGROUND 

2.1 Partitioned Matrices 

A partitioned matrix divides a larger system 

into smaller submatrices: 𝐴 = [𝐴11 𝐴12𝐴21 𝐴22] 

This is particularly useful for parallel 

computing and domain decomposition 

methods. 

2.2 Iterative Methods 

We briefly summarize each method: 

• Jacobi: Simultaneous updates using 

diagonal approximation. 

• Gauss-Seidel: Sequential updates 

using lower triangular form. 

• SOR: Adds relaxation parameter 𝜔 

• AOR: Introduces an acceleration 

parameter 𝛼. 

• PAOR: Combines both 𝜔 and 𝛼, with 

partition-aware application. 

2.3 Jacobi  Iteration Formula 𝑥𝑖(𝑘+1) = 1𝑎𝑖𝑖 (𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑗≠𝑖 𝑥𝑗(𝑘)) 

 

2.4 Guass-Seidal Iteration Formula 𝑥𝑖(𝑘+1) = 1𝑎𝑖𝑖 (𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑖−1
𝑗=1 𝑥𝑗(𝑘+1)

− ∑ 𝑎𝑖𝑗𝑛
𝑗=𝑖+1 𝑥𝑗(𝑘)) 
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2.5 SOR Iteration Formula 𝑥𝑖(𝑘+1) = (1 − 𝜔)𝑥𝑖(𝑘)
+ 𝜔𝑎𝑖𝑖 (𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑖−1

𝑗=1 𝑥𝑗(𝑘+1)
− ∑ 𝑎𝑖𝑗𝑛

𝑗=𝑖+1 𝑥𝑗(𝑘)) 

• 𝜔 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (1 <𝜔 < 2 𝑓𝑜𝑟 𝑜𝑣𝑒𝑟 − 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛), 
• 𝜔 = 1 𝑦𝑖𝑒𝑙𝑑𝑠 𝑡ℎ𝑒 𝐺𝑎𝑢𝑠𝑠 −𝑆𝑒𝑖𝑑𝑒𝑙 𝑚𝑒𝑡ℎ𝑜𝑑. 

2.6 AOR Iteration Formula 

Let 𝐴 = 𝐷 − 𝐿 − 𝑈 

where: 

• 𝐷 is the diagonal part of 𝐴 

• −𝐿 is the strictly lower triangular part 

• −𝑈 is the strictly upper triangular part 𝑥𝑖(𝑘+1) = (𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 + (1− 𝛼)𝜔𝐿 + 𝜔𝛼𝑈]𝑥(𝑘)+ 𝜔(𝐷 − 𝜔𝐿)−1 

Where: 

• 𝜔 is the relaxation parameter (like in 

SOR) 

• 𝛼 is the acceleration parameter 

(unique to AOR) 

• 𝑥(𝑘) is the k-th iteration 

• 𝑥(𝑘+1) is the next approximation 

 

2.3 PAOR Iteration Formula 𝐿𝑒𝑡 𝐴= 𝐷 − 𝐿− 𝑈, 𝑤ℎ𝑒𝑟𝑒 𝐷 𝑖𝑠 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙, 𝐿 𝑙𝑜𝑤𝑒𝑟, 𝑎𝑛𝑑 𝑈 𝑢𝑝𝑝𝑒𝑟. 
PAOR update: 𝑥𝑖(𝑘+1) = (𝐷 − 𝜔𝐿)−1[((1 − 𝜔)𝐷 + 𝜔𝑈)+ 𝜔𝑏] + 𝛼(𝑥(𝑘) − 𝑥(𝑘−1)) 

III. EXPERIMENTAL SETUP 

3.1 Matrix Example (8×8 Partitioned 

Matrix) 

Let A be partitioned as: 𝐴 = [𝐵 𝐶𝐷 𝐸] , 𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 4×4. 

We use a diagonally dominant matrix for 

convergence: 

 

3.2 AI/ML Integration 

We train a Random Forest Regressor on historical error data (iterations vs. residual norm) to 

predict convergence rate and suggest 𝜔 and 𝛼 values. 

Method Iterations to Converge Time (ms) Final Error Norm 

Jacobi 41 7.5 1.2× 10−6 

Gauss-Seidel 28 6.3 8.5× 10−7 

SOR(𝜔 = 1.25) 18 5.1 6.1× 10−7 

AOR(𝛼 = 1.1) 15 4.9 4.3× 10−7 

PAOR(AI-tuned: 𝜔 = 1.3, 𝛼 = 1.15) 

10 3.2 2.1× 10−7 

• ML-predicted parameters for 

PAOR significantly reduced 

iterations. 

• Error analysis plots confirm PAOR 

has the steepest error decay. 

• Partition-aware implementation 

improved parallelization efficiency.  
IV. CONCLUSION 

This study demonstrates the superior 

performance of the PAOR method when 
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applied to partitioned matrices. Using AI-

based parameter tuning, PAOR outperforms 

traditional methods in both speed and 

accuracy. Future work will focus on extending 

this to sparse and ill-conditioned matrices, as 

well as non-square systems. 
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