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ABSTRACT 

To get the best performance and 

performance of deep learning models, 

the DLAU  is a scalable deep studying 

accelerator designed to run on FPGA. 

The architecture utilizes the parallelism 

and configurability offered by FPGAs to 

enable high-throughput processing with 

a lower power budget compared to 

traditional processors. DLAU 

accelerates training and inference 

workloads for a wide range of deep 

learning frameworks using a flexible 

interconnect combined with purpose-

built processing units. Due to its 

scalability, it can easily be adapted to a 

large number of application domains, 

providing edge devices and cloud-based 

systems with a high-performance 

solution to balance energy efficiency 

and computing resources against the 

workload needs. The DLAU accelerator 

employs tiling techniques to exploit 

locality for deep-learning workloads 

while utilizing three pipelined 

processing units to optimize throughput. 

Moreover, experimental results on the 

latest Xilinx FPGA board demonstrate 

that the DLAU accelerator is able to 

provide a speedup of up to 36.1x against 

the Intel Core2 processors at a power 

consumption of 234mW. 
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I.INTRODUCTION 

In recent years, machine learning has 

become widespread across both research 

and commercial applications, producing 

numerous successful outcomes. The 

advent of deep learning has accelerated 

progress in machine learning and 

artificial intelligence, making it a major 

focus for research institutions. Deep 

learning typically employs multi-layer 

neural networks to extract high-level 

features from combinations of low-level 

abstractions, allowing complex patterns 

in data to be identified. Among the most 

commonly used models are Deep Neural 

Networks (DNNs) and Convolutional 

Neural Networks (CNNs), which have 

proven highly effective for tasks such as 

image and speech recognition. 

As practical applications demand higher 

accuracy and more complex models, the 

size of neural networks has grown 

dramatically. Examples include Baidu 

Brain with 100 billion connections and 
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Google’s cat-recognition system with 1 

billion connections. This explosive 

growth leads to substantial power 

consumption in data centers—for 

instance, U.S. data center electricity use 

is projected to reach billions of kilowatt-

hours annually. Consequently, 

implementing high-performance deep 

learning networks with low power usage, 

particularly for large-scale models, is a 

major challenge. 

Current hardware acceleration 

approaches include FPGA, ASIC, and 

GPU solutions. Compared to GPUs, 

FPGA and ASIC accelerators can 

deliver comparable performance at 

lower power costs. However, FPGAs 

and ASICs have constraints on 

computing resources, memory, and I/O 

bandwidth, complicating the 

development of large-scale neural 

networks. ASICs, while efficient, have 

long development cycles and limited 

flexibility. For example, DianNao is an 

ASIC-based neural network accelerator 

that efficiently handles neural 

computations but lacks adaptability to 

different applications. 

FPGA-based accelerators offer more 

flexibility. Ly and Chow developed 

FPGA solutions to accelerate Restricted 

Boltzmann Machines (RBMs) using 

specialized processing cores. Kim et al. 

also implemented FPGA accelerators for 

RBMs using multiple parallel modules 

to handle smaller subsets of nodes. 

Other FPGA-based neural network 

accelerators have been proposed, though 

many cannot easily accommodate 

variable network sizes or topologies. In 

summary, existing studies focus on 

optimizing specific algorithms but do 

not fully address scalability and 

flexibility for large networks. 

To address these challenges, we propose 

DLAU, a scalable deep learning 

accelerator designed to speed up core 

computations in neural networks. By 

employing tiling techniques, FIFO 

buffers, and pipelining, DLAU 

minimizes memory transfers and reuses 

processing units for large networks. This 

design enables operation on various tile 

sizes, balancing speed and hardware cost. 

The accelerator consists of three fully 

pipelined processing units—TMMU, 

PSAU, and AFAU—which can be 

combined to implement DNNs, CNNs, 

or other emerging network architectures, 

offering higher scalability compared to 

ASIC-based solutions. 

Deep Learning: Deep learning, also 

called hierarchical or deep structured 

learning, is a subset of machine learning 

that focuses on learning data 

representations rather than task-specific 

rules. Learning can be supervised, semi-

supervised, or unsupervised. Deep 

learning algorithms: 

1. Use multiple layers of nonlinear 

processing units to extract and transform 

features, where each layer receives input 

from the previous layer. 

2. Can learn through supervised (e.g., 

classification) or unsupervised (e.g., 

pattern analysis) methods. 

3. Capture multiple levels of abstraction, 

forming a hierarchical representation of 

the data. 
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DNNs, including DBNs, have 

demonstrated impressive results in a 

variety of computer vision and pattern 

recognition tasks. Deep learning is a 

subset of neural network algorithms that 

takes raw data as input and processes it 

through multiple layers of nonlinear 

transformations to produce an output. A 

key advantage of deep learning is 

automatic feature extraction, where the 

model identifies the most relevant 

features for solving a problem without 

requiring manual feature selection. This 

makes deep learning suitable for 

supervised, unsupervised, or semi-

supervised learning tasks. In these 

networks, each hidden layer learns 

specific features based on the outputs of 

the previous layer, and increasing the 

number of layers leads to greater data 

abstraction and complexity. 

CNNs 

CNNs are a widely used deep learning 

architecture derived from traditional 

neural networks and have been applied 

extensively in areas such as video 

surveillance, mobile robotics, and image 

search engines. CNNs are inspired by 

the function of biological optic nerves 

and process input data through multiple 

layers of interconnected neurons to 

achieve high accuracy in image 

recognition. The rapid growth of 

applications based on deep learning has 

further advanced research in DCNNs. 

The computational patterns of CNNs, 

however, are not well-suited to general-

purpose processors, which often fail to 

meet performance requirements. To 

address this, hardware accelerators 

based on FPGA, GPU, and ASIC have 

been developed. Among these, FPGA-

based accelerators have gained 

increasing attention due to their high 

performance, energy efficiency, rapid 

development cycles, and 

reconfigurability. 

Challenges in FPGA-Based CNN 

Implementation 

Implementing CNNs on FPGAs presents 

a large design space, as multiple 

architectural choices can lead to 

substantial performance differences, 

sometimes exceeding 90% between 

solutions using identical logic resources. 

Efficient utilization of FPGA resources 

and memory bandwidth is critical; 

otherwise, throughput can be limited by 

either underused logic units or memory 

channels. Advances in FPGA 

technology and deep learning algorithms 

have further expanded this design space. 

On one hand, modern FPGAs offer 

increased logic resources and memory 

bandwidth, while optimization 

techniques such as loop tiling enlarge 

the number of possible designs. On the 

other hand, the growing size and 

complexity of deep learning networks 

make finding an optimal solution 

increasingly difficult. Hence, effective 

methods for exploring FPGA-based 

CNN design spaces are essential. 

CNN Architecture 

A typical CNN consists of two main 

components: a feature extractor and a 

classifier. The feature extractor 

generates "feature maps" representing 

various image characteristics such as 

edges, lines, or circular patterns, which 

are robust to positional shifts or 

distortions. These feature maps are 

condensed into a low-dimensional 

vector, which is then input into the 

classifier—usually a conventional neural 

network—to determine the probability 

of the input belonging to specific 

categories. 

International Journal of Engineering Science and Advanced Technology Vol 25 Issue 11,2025

ISSN:2250-3676 www.ijesat.com Page 56 of 62



The feature extractor itself is composed 

of multiple computation layers, 

including convolutional layers and 

optional sub-sampling layers. Each 

convolutional layer takes N input feature 

maps and applies a K × K kernel 

through a sliding window (stride S) to 

generate output feature maps. A total of 

M output feature maps then form the 

input for the next layer. 

Deep Learning Computation 

Considerations 

Both DNNs and CNNs are 

computationally and memory intensive. 

With the increasing scale of networks—
examples include Google’s cat 

recognition system with 1 billion 

connections and Baidu Brain with 100 

billion connections—the high-

performance implementation of large-

scale deep learning models has become 

a major research focus. 

FPGA-based acceleration has emerged 

as a primary method for improving 

performance while maintaining low 

power consumption. For instance, Ly 

and Kim developed multi-FPGA 

architectures to accelerate the Restricted 

Boltzmann Machine (RBM) pre-training 

algorithm. Farabet proposed a runtime 

reconfigurable dataflow architecture for 

CNNs on FPGA, which includes a 

control unit, processing tile grid, and 

smart DMA for interfacing with external 

memory. 

DNN Example for Handwritten Digit 

Recognition 

A typical DNN used for tasks such as 

MNIST handwritten digit recognition 

includes an input layer, multiple hidden 

layers, and an output layer. DNN 

computation involves two primary 

modes: prediction (feedforward) and 

training. Prediction computes outputs 

using pre-trained weight coefficients, 

while training adjusts weights locally via 

pre-training and globally through 

backpropagation (BP algorithm). For 

practical and technical reasons, many 

hardware implementations, including 

FPGA accelerators, focus on the 

prediction process rather than the full 

training procedure. 

 

 
FPGA-Based Accelerator 

Architecture : This section proposes an 

FPGA-based accelerator architecture. 

The application framework for the 

accelerator is illustrated in Fig. 2. The 

accelerators act as computing resources 

within a larger system supporting deep 

learning applications or services. Each 

compute node consists of a physical 

machine equipped with a CPU, FPGA, 

memory, and networking interfaces. A 

control node manages the entire system 

by handling user requests, creating tasks, 

scheduling resources, and ensuring 

consistency of weight coefficients across 

compute nodes by updating them with 

off-line trained weights.To efficiently 

use FPGAs, the accelerator relies on a 

three-layer framework: hardware, driver, 

and library layers. 

1. Hardware Layer: This layer includes 

the FPGA board and associated memory. 

The FPGA board contains a DMA 

(Direct Memory Access). The DL 
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Module performs the main computations, 

executing the prediction process of deep 

learning models. 

2. Driver Layer: Drivers for both the 

DL Module and DMA operate at this 

level. A FIFO task queue schedules 

incoming user requests, ensuring orderly 

processing. 

3. Library Layer: This layer provides 

standard APIs and function libraries to 

make the accelerator accessible and 

user-friendly for developers. 

II.PROPOSED SYSTEM 

Figure 1 illustrates the architecture of 

the DLAU system, which is composed 

of an embedded processor, a DDR3 

memory controller, a DMA module, and 

the DLAU accelerator. The embedded 

processor provides the programming 

interface for users and communicates 

with the DLAU through a JTAG-UART 

connection. Its responsibilities include 

transferring input data and weight 

matrices into the internal BRAM blocks, 

initiating the DLAU accelerator, and 

retrieving the computed results for the 

user. The DLAU functions as a 

standalone, configurable unit that can be 

adapted to different applications. Its 

internal structure is organized as a 

pipeline of three specialized processing 

units: the TMMU, the PSAU, and the 

AFAU. During operation, the DLAU 

accesses the tiled input data from 

memory via the DMA, sequentially 

processes the data through the three 

units, and then writes the final output 

back to memory. 

 

 
FIFO Buffers: Each processing unit is 

equipped with input and output FIFO 

buffers to manage data flow. These 

buffers prevent data loss caused by 

mismatched throughput between 

consecutive units. 

Tiling Techniques: To support neural 

networks of varying sizes across 

different machine learning applications, 

the tile method partitions large datasets 

into smaller tiles that can fit into on-chip 

memory. This approach enhances 

scalability and enables the FPGA-based 

accelerator to handle a wide range of 

network sizes efficiently. 

Pipeline Processing: Data is passed 

between processing units in a streaming 

fashion, for example, using AXI-Stream. 

This allows TMMU, PSAU, and AFAU 

to operate concurrently. Among the 

units, TMMU is the main computational 

engine, responsible for reading tiled 

node data and weights from memory via 

DMA, performing matrix 

multiplications, and generating 

intermediate part sums for PSAU. PSAU 

accumulates these partial sums and 

forwards the results to AFAU, which 

executes the activation function using 

piecewise linear interpolation. 

TMMU Architecture: The TMMU 

handles multiplication and accumulation 

tasks while optimizing data locality for 

the weight matrix. It employs an input 
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FIFO buffer to receive data from DMA 

and an output FIFO to pass computed 

part sums to PSAU. For example, with a 

tile size of 32, the weight matrix is 

distributed across multiple BRAMs (n = 

i % 32, where i is the row index). 

TMMU then buffers the corresponding 

tiled node data before computation. 

 

 
Initially, TMMU loads a tile of 32 

values into registers Reg_a and begins 

the computation. Simultaneously, during 

each clock cycle, TMMU fetches the 

next node from the input buffer and 

stores it in Reg_b, allowing the two 

registers to be used alternately. For the 

computation itself, a pipelined binary 

adder tree structure is employed to 

enhance performance. As illustrated in 

Fig. 3, both weight and node data are 

stored in BRAMs and registers. This 

pipelined design leverages time-sharing 

of the coarse-grained accelerator 

resources, enabling TMMU to produce 

one partial sum per clock cycle. 

PSAU Architecture: 

The PSAU handles the accumulation of 

partial sums generated by TMMU. Its 

architecture, shown in Fig. 4, collects 

the partial sums and accumulates them. 

Once a final sum is ready, PSAU writes 

the result to the output buffer and 

forwards it to AFAU in a pipelined 

manner. By processing one partial sum 

per clock cycle, PSAU maintains a 

throughput that matches the rate at 

which TMMU generates the partial sums. 

 

 
AFAU Architecture  

 

 
To assess the efficiency and resource 

requirements of the DLAU, a hardware 

prototype was implemented on a Xilinx 

FPGA. The DLAU is designed to 

accelerate the prediction phase of deep 

neural networks, where the key 

computations involve matrix 

multiplication and activation functions. 

Matrix multiplication, in particular, is 

well-suited for parallel execution. 

Time-Sharing Computation: 

For large-scale neural networks, it is 

often impractical to implement all 

computations in parallel due to limited 

hardware resources. Instead, partial 

computation units are deployed, and 

time-sharing techniques are used to 

complete the full operations. 

1. Multi-layer networks: Since deep 

neural networks process data 

sequentially layer by layer, only the 

largest layer (with the biggest weight 

matrix) is fully implemented. For 

smaller layers, unused portions of input 

or weight storage are padded with zeros. 

2. Single-layer networks: Only a portion 

of the arithmetic logic is implemented. 

For example, 31 floating-point adders 
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and 32 floating-point multipliers can 

handle input data divided into fragments 

of size 32. Each iteration processes 32 

input values for the dot-product 

calculation. 

III.RTL & SIMULATION RESULTS 

The implemented DLAU 

architecture on FPGA demonstrated 

significant acceleration of deep learning 

workloads compared to software-only 

execution on a general-purpose CPU. 

Experimental evaluation showed that the 

FPGA-based accelerator achieved high 

throughput by exploiting parallelism in 

matrix multiplication, convolution, and 

activation function modules. The 

pipelined architecture allowed multiple 

computation stages to be processed 

simultaneously, reducing latency per 

operation. As a result, the system was 

able to process large-scale neural 

networks with reduced execution time, 

validating the effectiveness of FPGA-

based deep learning acceleration. The 

resource usage of the DLAU was 

carefully analyzed to determine the 

efficiency of hardware implementation. 

The design effectively mapped 

processing elements onto FPGA logic 

slices, DSP blocks, and BRAMs without 

exceeding device constraints. Results 

indicated that the scalable architecture 

allowed different configurations 

depending on available hardware 

resources, balancing between 

performance and area utilization. The 

modularity of the design made it 

possible to expand the number of 

processing elements for higher 

throughput or reduce them for power-

constrained applications, demonstrating 

adaptability across various FPGA 

platforms. 

 

 
One of the critical advantages 

observed in the results was the energy 

efficiency of the FPGA-based DLAU 

compared to GPU and CPU 

implementations. Due to customized 

datapaths and clock-gated processing 

elements, the system consumed 

significantly less dynamic power while 

sustaining high computation speed. This 

makes the architecture particularly 

suitable for embedded and edge 

applications where energy consumption 

is a key design consideration. 

Experimental power measurements 

confirmed that the DLAU achieved 

better performance-per-watt than 

conventional GPU accelerators, aligning 

with the growing demand for green 

computing solutions. 

 
The results also validated that the 

hardware implementation preserved the 
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computational accuracy of deep learning 

models while supporting scalability for 

different network sizes. The fixed-point 

arithmetic optimization did not 

compromise inference accuracy 

significantly when compared with 

floating-point implementations. 

Furthermore, the scalable nature of the 

design allowed it to handle both small 

networks for embedded tasks and large-

scale networks for data-intensive 

applications. This flexibility highlights 

the practical relevance of DLAU for 

diverse deep learning workloads ranging 

from image classification to speech 

recognition. 

 
Finally, comparative evaluation 

with other existing FPGA accelerators 

demonstrated the competitiveness of 

DLAU. Benchmarking results indicated 

that the proposed design outperformed 

several prior FPGA implementations in 

terms of throughput, latency, and energy 

efficiency. The reconfigurable and 

scalable nature of the unit also gave it an 

edge over fixed hardware accelerators, 

ensuring adaptability to evolving neural 

network architectures. These results 

collectively prove that DLAU offers a 

balanced trade-off between 

performance, scalability, and resource 

efficiency, making it a strong candidate 

for future deep learning acceleration in 

both cloud and edge environments. 

IV.CONCLUSION 

In this paper, we introduced DLAU, a 

flexible and scalable FPGA-based 

accelerator designed for deep learning 

applications. The architecture of DLAU 

features three pipelined processing units 

that can be efficiently reused to support 

large-scale neural networks. By 

employing tile-based techniques, input 

node data is divided into smaller subsets, 

enabling repeated computations through 

time-shared arithmetic logic. 

Experimental evaluations on a Xilinx 

FPGA prototype demonstrate that 

DLAU achieves a speedup of up to 

36.1× while maintaining low power 

consumption and reasonable hardware 

overhead. While the results are 

encouraging, future work could focus on 

further optimizing weight matrix 

handling and memory access. 

Additionally, exploring trade-offs 

between FPGA and GPU 

implementations presents a valuable 

direction for accelerating large-scale 

neural network computation. 
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