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ABSTRACT
To get the
performance of deep learning models,
the DLAU is a scalable deep studying
accelerator designed to run on FPGA.
The architecture utilizes the parallelism
and configurability offered by FPGAs to
enable high-throughput processing with

best performance and

a lower power budget compared to

DLAU
inference
workloads for a wide range of deep
learning frameworks using a flexible

traditional processors.

accelerates  training and

interconnect combined with purpose-
built processing units. Due to its
scalability, it can easily be adapted to a
large number of application domains,
providing edge devices and cloud-based
systems with a high-performance
solution to balance energy efficiency
and computing resources against the
workload needs. The DLAU accelerator
employs tiling techniques to exploit
locality for deep-learning workloads
while  utilizing  three  pipelined
processing units to optimize throughput.
Moreover, experimental results on the
latest Xilinx FPGA board demonstrate
that the DLAU accelerator is able to
provide a speedup of up to 36.1x against
the Intel Core2 processors at a power
consumption of 234mW.
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LINTRODUCTION

In recent years, machine learning has
become widespread across both research
and commercial applications, producing
numerous successful outcomes. The
advent of deep learning has accelerated
progress in machine learning and
artificial intelligence, making it a major
focus for research institutions. Deep
learning typically employs multi-layer
neural networks to extract high-level
features from combinations of low-level
abstractions, allowing complex patterns
in data to be identified. Among the most
commonly used models are Deep Neural
Networks (DNNs) and Convolutional
Neural Networks (CNNs), which have
proven highly effective for tasks such as
image and speech recognition.

As practical applications demand higher
accuracy and more complex models, the
size of neural networks has grown
dramatically. Examples include Baidu
Brain with 100 billion connections and
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Google’s cat-recognition system with 1

billion connections. This explosive
growth leads to substantial power
consumption in data centers—for

instance, U.S. data center electricity use
is projected to reach billions of kilowatt-
hours annually. Consequently,
implementing high-performance deep
learning networks with low power usage,
particularly for large-scale models, is a
major challenge.

Current hardware acceleration
approaches include FPGA, ASIC, and
GPU solutions. Compared to GPUs,
FPGA and ASIC accelerators can
deliver comparable performance at
lower power costs. However, FPGAs
and ASICs
computing resources, memory, and I/O
bandwidth, complicating the
development of large-scale
networks. ASICs, while efficient, have
long development cycles and limited
flexibility. For example, DianNao is an

have constraints on

neural

ASIC-based neural network accelerator
that  efficiently = handles  neural
computations but lacks adaptability to
different applications.

FPGA-based accelerators offer more
flexibility. Ly and Chow developed
FPGA solutions to accelerate Restricted
Boltzmann Machines (RBMs) using
specialized processing cores. Kim et al.
also implemented FPGA accelerators for
RBMs using multiple parallel modules
to handle smaller subsets of nodes.
Other FPGA-based neural network
accelerators have been proposed, though
cannot easily accommodate
variable network sizes or topologies. In

many

summary, existing studies focus on
optimizing specific algorithms but do
not fully address scalability and
flexibility for large networks.
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To address these challenges, we propose
DLAU, a deep learning
accelerator designed to speed up core
computations in neural networks. By
employing tiling techniques, FIFO
buffers, and  pipelining, DLAU
minimizes memory transfers and reuses

scalable

processing units for large networks. This
design enables operation on various tile
sizes, balancing speed and hardware cost.
The accelerator consists of three fully
pipelined processing units—TMMU,
PSAU, and AFAU-—which can be
combined to implement DNNs, CNNs,
or other emerging network architectures,
offering higher scalability compared to
ASIC-based solutions.

Deep Learning: Deep learning, also
called hierarchical or deep structured
learning, is a subset of machine learning
that focuses on learning data
representations rather than task-specific
rules. Learning can be supervised, semi-
supervised, or unsupervised. Deep
learning algorithms:

1. Use multiple layers of nonlinear
processing units to extract and transform
features, where each layer receives input
from the previous layer.

2. Can learn through supervised (e.g.,
classification) or unsupervised (e.g.,
pattern analysis) methods.

3. Capture multiple levels of abstraction,
forming a hierarchical representation of

the data.
Neurons

InputLayer  HiddenLayers  Output Layer

Fig. 1: Deep neural network (DNN) architecture
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DNNss, including DBNs, have
demonstrated impressive results in a
variety of computer vision and pattern
recognition tasks. Deep learning is a
subset of neural network algorithms that
takes raw data as input and processes it
through multiple layers of nonlinear
transformations to produce an output. A
key advantage of deep learning is
automatic feature extraction, where the
model identifies the most relevant
features for solving a problem without
requiring manual feature selection. This
makes deep learning suitable for
supervised,
supervised learning tasks.
networks, each hidden layer learns
specific features based on the outputs of
the previous layer, and increasing the
number of layers leads to greater data
abstraction and complexity.

CNNs

CNNs are a widely used deep learning
architecture derived from traditional

unsupervised, or semi-

In these

neural networks and have been applied
extensively in areas such as video
surveillance, mobile robotics, and image
search engines. CNNs are inspired by
the function of biological optic nerves
and process input data through multiple
layers of interconnected neurons to
achieve high image
recognition. The rapid growth of
applications based on deep learning has
further advanced research in DCNNS.

The computational patterns of CNNs,
however, are not well-suited to general-
purpose processors, which often fail to
meet performance requirements. To
address this, hardware accelerators
based on FPGA, GPU, and ASIC have
been developed. Among these, FPGA-
based  accelerators  have  gained
increasing attention due to their high

accuracy in
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performance, energy efficiency, rapid

development cycles, and
reconfigurability.

Challenges in FPGA-Based CNN
Implementation

Implementing CNNs on FPGAs presents
a large design space, as multiple
architectural choices can lead to
substantial performance differences,
sometimes exceeding 90% between

solutions using identical logic resources.
Efficient utilization of FPGA resources
and memory bandwidth is critical;
otherwise, throughput can be limited by
either underused logic units or memory
FPGA
technology and deep learning algorithms
have further expanded this design space.
On one hand, modern FPGAs offer
increased logic resources and memory
bandwidth, while optimization
techniques such as loop tiling enlarge
the number of possible designs. On the
other hand, the growing size and
complexity of deep learning networks
make finding an optimal solution
increasingly difficult. Hence, effective
methods for exploring FPGA-based
CNN design spaces are essential.

CNN Architecture

A typical CNN consists of two main
components: a feature extractor and a

channels. Advances n

classifier. ~ The  feature  extractor
generates "feature maps" representing
various image characteristics such as
edges, lines, or circular patterns, which
are robust to positional shifts or
distortions. These feature maps are
condensed into a low-dimensional
vector, which is then input into the
classifier—usually a conventional neural
network—to determine the probability
of the input belonging to specific
categories.
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The feature extractor itself is composed

of  multiple computation layers,
including convolutional layers and
optional sub-sampling layers. Each

convolutional layer takes N input feature
maps and applies a K x K kernel
through a sliding window (stride S) to
generate output feature maps. A total of
M output feature maps then form the
input for the next layer.

Deep Learning Computation
Considerations
Both DNNs and CNNs are

computationally and memory intensive.
With the increasing scale of networks—
examples  include  Google’s  cat
recognition system with 1 billion
connections and Baidu Brain with 100
billion high-
performance implementation of large-
scale deep learning models has become
a major research focus.

FPGA-based acceleration has emerged

as a primary method for improving

connections—the

performance while maintaining low
power consumption. For instance, Ly
and Kim developed multi-FPGA
architectures to accelerate the Restricted
Boltzmann Machine (RBM) pre-training
algorithm. Farabet proposed a runtime
reconfigurable dataflow architecture for
CNNs on FPGA, which includes a
control unit, processing tile grid, and
smart DMA for interfacing with external
memory.

DNN Example for Handwritten Digit
Recognition

A typical DNN used for tasks such as
MNIST handwritten digit recognition
includes an input layer, multiple hidden
layers, and an output layer. DNN
computation involves two primary
modes: prediction (feedforward) and
training. Prediction computes outputs

www.ijesat.com

using pre-trained weight coefficients,
while training adjusts weights locally via
pre-training and globally through
backpropagation (BP algorithm). For
practical and technical reasons, many
hardware implementations, including
FPGA accelerators, focus on the
prediction process rather than the full
training procedure.
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Figure . The application framework of accelerator based FPGA
FPGA-Based Accelerator
Architecture : This section proposes an
FPGA-based accelerator
The application framework for the
accelerator is illustrated in Fig. 2. The

architecture.

accelerators act as computing resources
within a larger system supporting deep
learning applications or services. Each
compute node consists of a physical
machine equipped with a CPU, FPGA,
memory, and networking interfaces. A
control node manages the entire system
by handling user requests, creating tasks,
scheduling resources, and
consistency of weight coefficients across
compute nodes by updating them with
off-line trained weights.To efficiently

ensuring

use FPGAs, the accelerator relies on a
three-layer framework: hardware, driver,
and library layers.

1. Hardware Layer: This layer includes
the FPGA board and associated memory.
The FPGA board contains a DMA
(Direct Memory Access). The DL
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Module performs the main computations,
executing the prediction process of deep
learning models.
2. Driver Layer: Drivers for both the
DL Module and DMA operate at this
level. A FIFO task queue schedules
incoming user requests, ensuring orderly
processing.
3. Library Layer: This layer provides
standard APIs and function libraries to
make the accelerator accessible and
user-friendly for developers.
ILPROPOSED SYSTEM
Figure 1 illustrates the architecture of
the DLAU system, which is composed
of an embedded processor, a DDR3
memory controller, a DMA module, and
the DLAU accelerator. The embedded
processor provides the programming
interface for users and communicates
with the DLAU through a JTAG-UART
connection. Its responsibilities include
transferring input data and weight
matrices into the internal BRAM blocks,
initiating the DLAU accelerator, and
retrieving the computed results for the
user. The DLAU functions as a
standalone, configurable unit that can be
adapted to different applications. Its
internal structure 1is organized as a
pipeline of three specialized processing
units: the TMMU, the PSAU, and the
AFAU. During operation, the DLAU
accesses the tiled input data from
memory via the DMA, sequentially
processes the data through the three
units, and then writes the final output
back to memory.
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Fig.2.DLAU Accelerator Architecture.
FIFO Buffers: Each processing unit is
equipped with input and output FIFO
buffers to manage data flow. These
buffers prevent data loss caused by
mismatched throughput between
consecutive units.

Tiling Techniques: To support neural
of varying
different machine learning applications,
the tile method partitions large datasets
into smaller tiles that can fit into on-chip
memory. This approach enhances
scalability and enables the FPGA-based
accelerator to handle a wide range of

networks sizes  across

network sizes efficiently.

Pipeline Processing: Data is passed
between processing units in a streaming
fashion, for example, using AXI-Stream.
This allows TMMU, PSAU, and AFAU
to operate concurrently. Among the
units, TMMU is the main computational
engine, responsible for reading tiled
node data and weights from memory via
DMA,
multiplications, and generating
intermediate part sums for PSAU. PSAU
accumulates these partial sums and
forwards the results to AFAU, which
executes the activation function using
piecewise linear interpolation.

TMMU Architecture: The TMMU
handles multiplication and accumulation
tasks while optimizing data locality for

performing matrix

the weight matrix. It employs an input
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FIFO buffer to receive data from DMA
and an output FIFO to pass computed
part sums to PSAU. For example, with a
tile size of 32, the weight matrix is
distributed across multiple BRAMs (n =
i % 32, where 1 is the row index).
TMMU then buffers the corresponding
tiled node data before computation.

il

DHOHIO00N

Fig. 3. TMMU Schematic Diagram.

Initially, TMMU loads a tile of 32
values into registers Reg a and begins
the computation. Simultaneously, during
each clock cycle, TMMU fetches the
next node from the input buffer and
stores it in Reg b, allowing the two
registers to be used alternately. For the
computation itself, a pipelined binary
adder tree structure is employed to
enhance performance. As illustrated in
Fig. 3, both weight and node data are
stored in BRAMs and registers. This
pipelined design leverages time-sharing
of the coarse-grained accelerator
resources, enabling TMMU to produce
one partial sum per clock cycle.

PSAU Architecture:

The PSAU handles the accumulation of
partial sums generated by TMMU. Its
architecture, shown in Fig. 4, collects
the partial sums and accumulates them.
Once a final sum is ready, PSAU writes
the result to the output buffer and
forwards it to AFAU in a pipelined
manner. By processing one partial sum
per clock cycle, PSAU maintains a
throughput that matches the rate at

which TMMU generates the partial sums.
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Fig. 4. PSAU schematic.
AFAU Architecture

Finally, AFAU implements the activation function using piecewise linear

ammmcw

interpolation (y = ai*x+bi, x € [x1, xi+1]). This method has been widely applied to
implement activation functions with negligible accuracy loss when the interval
between xi and xi+l is insignificant. Equation (1) shows the implementation of
sigmoid function. For x > 8 and x <-8, the results are sufficiently close to the bounds
of 1 and 0, respectively. For the cases in —8 <x <0 and 0 < x <8, different functions

are configured. In total, we divide the sigmoid function into four segments

T o ifx = -8
I|+ H— ] -k '\I-| ifF—-8<x=<0
flx) = fl {1}
[z s

ifx = 3.

To assess the efficiency and resource
requirements of the DLAU, a hardware
prototype was implemented on a Xilinx
FPGA. The DLAU is designed to
accelerate the prediction phase of deep
neural networks, where the key
computations involve matrix
multiplication and activation functions.
Matrix multiplication, in particular, is
well-suited for parallel execution.
Time-Sharing Computation:

For large-scale neural networks, it is
often impractical to implement all
computations in parallel due to limited
hardware resources. Instead, partial
computation units are deployed, and
time-sharing techniques are used to
complete the full operations.

1. Multi-layer networks: Since deep
neural networks process data
sequentially layer by layer, only the
largest layer (with the biggest weight
matrix) is fully implemented. For
smaller layers, unused portions of input
or weight storage are padded with zeros.
2. Single-layer networks: Only a portion
of the arithmetic logic is implemented.
For example, 31 floating-point adders
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and 32 floating-point multipliers can
handle input data divided into fragments
of size 32. Each iteration processes 32
input values for the dot-product
calculation.
IILRTL & SIMULATION RESULTS
The implemented DLAU
architecture on FPGA demonstrated
significant acceleration of deep learning
workloads compared to software-only
execution on a general-purpose CPU.
Experimental evaluation showed that the
FPGA-based accelerator achieved high
throughput by exploiting parallelism in
matrix multiplication, convolution, and
activation  function modules. The
pipelined architecture allowed multiple
computation stages to be processed
simultaneously, reducing latency per
operation. As a result, the system was
able to process large-scale
networks with reduced execution time,
validating the effectiveness of FPGA-
based deep learning acceleration. The

neural

resource usage of the DLAU was
carefully analyzed to determine the
efficiency of hardware implementation.
The  design  effectively  mapped
processing elements onto FPGA logic
slices, DSP blocks, and BRAMs without
exceeding device constraints. Results
indicated that the scalable architecture

allowed different configurations
depending on available hardware
resources, balancing between

performance and area utilization. The
modularity of the design made it
possible to expand the number of
processing  elements  for  higher
throughput or reduce them for power-
constrained applications, demonstrating
adaptability across various FPGA
platforms.

www.ijesat.com

One of the critical advantages
observed in the results was the energy
efficiency of the FPGA-based DLAU
compared to GPU and CPU
implementations. Due to customized
datapaths and clock-gated processing
elements, the system
significantly less dynamic power while
sustaining high computation speed. This
makes the architecture particularly
suitable for embedded and edge
applications where energy consumption
is a key design consideration.

consumed

Experimental power measurements
confirmed that the DLAU achieved
better = performance-per-watt than
conventional GPU accelerators, aligning
with the growing demand for green
computing solutions.

The results also validated that the

hardware implementation preserved the
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computational accuracy of deep learning
models while supporting scalability for
different network sizes. The fixed-point

arithmetic ~ optimization did not
compromise inference accuracy
significantly when compared with
floating-point implementations.

Furthermore, the scalable nature of the
design allowed it to handle both small
networks for embedded tasks and large-
scale networks for data-intensive
applications. This flexibility highlights
the practical relevance of DLAU for
diverse deep learning workloads ranging

from image classification to speech

recognition.

Finally, comparative evaluation
with other existing FPGA accelerators
demonstrated the competitiveness of
DLAU. Benchmarking results indicated
that the proposed design outperformed
several prior FPGA implementations in
terms of throughput, latency, and energy
efficiency. The reconfigurable and
scalable nature of the unit also gave it an
edge over fixed hardware accelerators,
ensuring adaptability to evolving neural
network architectures. These results
collectively prove that DLAU offers a
balanced trade-off between
performance, scalability, and resource
efficiency, making it a strong candidate
for future deep learning acceleration in
both cloud and edge environments.

IV.CONCLUSION
In this paper, we introduced DLAU, a
flexible and scalable FPGA-based

www.ijesat.com

accelerator designed for deep learning
applications. The architecture of DLAU
features three pipelined processing units
that can be efficiently reused to support
large-scale networks. By
employing tile-based techniques, input
node data is divided into smaller subsets,

neural

enabling repeated computations through
time-shared logic.
Experimental evaluations on a Xilinx
FPGA prototype
DLAU achieves a speedup of up to
36.1x while maintaining low power
consumption and reasonable hardware
overhead. While the results are
encouraging, future work could focus on
further optimizing weight
handling and  memory
Additionally,  exploring  trade-offs
between FPGA and GPU
implementations presents a valuable
direction for accelerating large-scale
neural network computation.

arithmetic

demonstrate  that

matrix
access.
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