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ABSTRACT 

 

Learning from human preferences is vital for language models (LMs) to successfully cater to 

human wants and social values. Using human feedback to motivate compliance with 

instructions, previous studies have made significant improvement. Proximal Policy 

Optimization (PPO) and other online RL methods are heavily relied upon in these methods, 

although they have shown to be unstable and difficult to tune for language models. The 

complexity involved in implementing a distributed system for PPO also reduces the 

effectiveness of distributed training on a broad scale. To align LMs without engaging with RL 

settings, we offer an offline method called reinforcement learning from human feedback 

(RLHF). To better align language models with user preferences, we investigate the use of 

maximum likelihood estimation (MLE) with filtering, reward-weighted regression (RWR), and 

Decision Transform (DT). Our methods use a loss function analogous to supervised fine tuning 

to guarantee more consistent model training than PPO while making do with a minimalist 

machine learning system (MLSys) and significantly less computational resources (by about 

12.3%). The experimental data show that DT alignment performs better than PPO and other 

Offline RLHF techniques. 
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1. Introduction 

Since its release by the US company OpenAI in November 2022, a chatbot, ChatGPT, has 

stunned the world with its outstanding performance in conversation with humans [1]. Bill Gates 

acclaimed that the new generation of conversational agents ‘will change the way people work, 

learn, travel, get health care, and communicate with each other’, bringing in significant 

productivity improvement and reducing some of the world’s worst inequities, particularly for 

health [1]. The White House media release acclaimed that ‘From cancer prevention to 

mitigating climate change to so much in between, AI—if properly managed— can contribute 

enormously to the prosperity, equality, and security of all’ [2].  ChatGPT is a representative 

example of generative artificial intelligence (AI) technology. Generative AI refers to a subset 

of AI technologies that learn to predict the next word or sequence of words giving the preceding 

context. They can generate new content, such as text, images, music, speech, video, or code. 

Their huge success has attracted unprecedented speed of adoption, excitement, and 

controversy. Generative AI models use advanced deep learning and transfer learning 

algorithms and machine learning techniques to learn patterns and relationships from the 

existing data and generate new content similar in style, tone, or structure. Deep learning is a 

subset of machine learning that uses neural networks with multiple layers of processing nodes 

to analyze various factors of data for complex pattern recognition and prediction. Transfer 
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learning is a machine learning technique that adapts a pre-trained model to a new but related 

task, leveraging knowledge from the initial task to improve new task performance. 

Generative AI models are a subset of large language models (LLMs), e.g., generative pre-

trained transformer (GPT). For example, GPT-3 is trained on 175 billion parameters, while 

GPT-4 is trained on one trillion parameters. An intermediary version, GPT-3.5, is specifically 

trained to predict the next word in a sequence using a large dataset of Internet text. It is the 

model that underpins the current version of ChatGPT [3]. After being pretrained on huge 

amounts of data to learn intricate patterns and relationships, these LLMs have developed 

capabilities to imitate human language processing [4]. Upon receiving a query or request in a 

prompt, ChatGPT can generate relevant and meaningful responses and answer questions 

drawing from its learned language patterns and representations [5]. These LLMs are often 

referred to as the “foundation model” or “base model” for generative AI, as they are the starting 

point for the development of more advanced and complex models. 

Distinct from traditional AI systems, which are typically rule-based or rely on predefined 

datasets, generative AI models possess the unique ability to create new content that is original 

and not explicitly programmed. This can result in outputs that are similar in style, tone, or 

structure to the prompt instruction. Therefore, if designed thoughtfully and developed 

responsibly, generative AI has the potential to amplify human capabilities in various domains 

of information management. These may include support for decision-making, knowledge 

retrieval, question answering, language translation, and automatic report or computer code 

generation [4]. 

It is not surprising that a significant area for generative AI and LLM to revolutionize is 

healthcare and medicine, a human domain in which language is key for effective interactions 

for and between clinicians and patients [6]. It is also an information-rich field where every 

assessment, diagnosis, treatment, care plan, and outcome evaluation must be documented in 

specific terms or natural language in electronic health records (EHR). Once the LLM is exposed 

to the relevant EHR data set in a specific healthcare field, the model will learn the relationships 

between the terms and extend its model to represent the knowledge in this field. With the 

further advancement of generative AI technologies, including video and audio technologies, 

the dream is not far away for healthcare providers to audit instead of simply typing data into 

EHR. Clinicians may orally request computers to write prescriptions or order lab tests and ask 

the generative AI models integrated with EHR systems to automatically retrieve data, generate 

shift hand-over reports and discharge summaries, and support diagnostic and prescription 

decision-making. Therefore, generative AI can be ‘a powerful tool in the medical field’ [7]. 

Generative AI and LLMs have also sparked intense debates and discussions regarding their 

potential benefits, future perspectives, and critical limitations for healthcare and medicine. In 

Sallam’s seminal systematic review of 60 selected papers that assess the utility of ChatGPT in 

healthcare education, research, and practice, 85% (51/60) of papers cited benefits/applications, 

while an overwhelming 97% (58/60) raised concerns or possible risks associated with ChatGPT 

use [8]. These findings suggest that with proper handling of ethical concerns, transparency, and 

legal matters, these technologies could not only expedite research and innovation but also foster 

equity in healthcare. 

 

2. Methods 

The scoping literature review addressed questions a health or medical scholar without adequate 

machine learning background yet keen on the generative AI and LLM field might ask. To 

identify the pertinent literature, our primary search was structured into two steps using Boolean 

logic with the keywords listed in Table 1. 
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Table 1. The keywords used for the literature search. 

 
Step 1 aimed to grasp the scope of generative AI and LLM, initiating with Google Scholar 

because the significant articles that were pertinent to our inquiries, e.g., the development of 

Open AI’s GPT models and Google’s PaLM models, were published in arXiv, a free repository 

for academic pre-prints. One query often led to subsequent queries, guided by the referenced 

literature; therefore, we further assessed these references. Once wellinformed about generative 

AI and LLM, we proceeded to Step 2, exploring the literature detailing their applications in 

healthcare or medicine in PubMed. The search period was from 1 March to 15 July 2023. 

Article titles and abstracts were scanned to assess their relevance to our research questions. 

Noting the focus on GPT’s limitations and performance (see Table 2), we extended keywords 

in Step 3, addressing ethical and regulatory considerations for generative AI. Drawing from 

official websites, we compiled regulatory perspectives from the US and UK governments on 

generative AI. This iterative approach, utilizing the keywords in Table 1, resulted in two 

distinct concept clusters relevant to our enquiry from the 88 analyzed article titles and abstracts 

(see Figure 1).  

Informed by the sharpened research questions and insights, we crafted the outline of our article, 

delineating fundamental research issues, concepts, and their causal interconnections. The 

iterative practices of evidence evaluation, question adjustment, and conceptual mapping 

persisted until we achieved satisfaction with the content. After this, we further polished and 

finalized the manuscript. 

Table 2. Comparison of key concepts included in the network of terms derived from the 

initially scanned 88 academic articles versus the 55 articles employed in this scoping review. 

Analysis was conducted on article titles and abstracts. 

 
3. Results 

We present our findings from seven aspects: technological approaches to generative AI 

applications, methods to train LLM, model evaluation, current applications of generative AI 

and LLM in healthcare and medicine, benefits, ethical and regulatory considerations, and future 

research and development directions. 
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3.1. Technological Approaches to the Application of Generative AI and LLMs 

Generative AI and LLMs are powered by a suite of deep learning technologies. For example, 

ChatGPT is a series of deep learning models that utilize transformer architecture that resorts to 

self-attention mechanisms to process large human-generated text datasets (GPT-4 response, 23 

August 2023). These AI technologies work in harmony to power ChatGPT, enabling it to 

handle a wide range of tasks, including natural language understanding, language generation, 

text completion, translation, summarization, and much more.  

There are three key factors in choosing LLMs to solve practical problems: models, data, and 

downstream tasks [1], which also apply to solve healthcare and medicine problems. 

3.1.1. Models 

Based on model training strategies, architectures, and use cases, LLMs are classified into two 

types [1]: (1) encoder–decoder or encoder-only language models and (2) decoderonly models. 

The encoder-only models represented by BERT family models have started to phase out after 

the debut of ChatGPT. Encoder–decoder models, e.g., Meta’s BART, remain promising as 

most of them are open-sourced, providing opportunities for the global software community to 

continuously explore and develop. Decoder-only models, represented by the GPT family 

models, Pathways Language Model (PaLM) introduced by Google [10], and LLaMA models 

from Meta, have and will continue to dominate the LLM space because they are the foundation 

models for generative AI technologies. 

3.1.2. Data 

The impact of data on the models’ effectiveness starts from pre-training data and continues 

through to the training, test, and inference data [6]. The quality, quantity, and diversity of pre-

training data significantly influence the performance of LLMs [1]. Therefore, pre-training base 

models on data from a specific healthcare or medical field to produce instruction fine-tuned 

models are the recommended development method for downstream machine learning tasks for 

these fields [13]. Of course, with abundant annotated data, both base LLM and instruction fine-

tuned models can achieve satisfactory performance on a particular task and meet the important 

privacy constraint for healthcare and medical data [14]. 

3.1.3. Task 

LLMs can be applied to four types of tasks: natural language understanding (NLU), natural 

language generation, knowledge-intensive tasks, and reasoning [1]. Traditional natural 

language understanding tasks include text classification, concept extraction or named entity 

recognition (NER), relationship extraction, dependency parsing, and entailment prediction. 

Many of these tasks are intermediate steps in large AI systems, such as NER for knowledge 

graph construction. Using the decoder LLMs may directly complete inference tasks and remove 

these intermediate tasks.  

Natural language generation includes two major types of tasks: (1) converting input texts into 

new symbol sequences, such as text summarization and machine translation, and (2) “open-

ended” generation, which aims to generate new text or symbols in response to the input prompt, 

e.g., question answering, crafting emails, composing news articles, and writing computer codes 

[1]. This capability is useful for many tasks in healthcare and medicine. 

3.2. Methods to Train LLMs 

3.2.1. Fine-Tuning LLMs 

LLMs can be fine-tuned by various strategies, e.g., modifying the number of parameters [18], 

size of the training data set, or the amount of computing used for training [1]. Fine-tuning 

LLMs will scale up the pretrained LLMs and significantly improve their performance in 

reasoning beyond the power-law rule to unlock unprecedented, fantastic emergent abilities 

[6,19]. Emergent abilities refer to specific competencies that do not exist in smaller models but 

become salient as the model scales. These include but are not limited to nuanced concept 

understanding, sophisticated word manipulation, advanced logical reasoning, and complex 
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coding tasks [6]. For instance, when the PaLM model was scaled from 8 billion parameters to 

540 billion parameters, it exhibited emergent abilities that essentially doubled its performance. 

The scaled Med-PaLM model achieved an accuracy of 67.2% in answering questions from the 

United States Medical Licensing Exam (USMLE) dataset. 

3.2.2. Reinforcement Learning from Human Feedback (RLHF) 

RLHF refers to methods that combine three interconnected model training processes: feedback 

collection, reward modeling, and policy optimization [22]. RLHF has been implemented as 

instruction prompts to train LLMs to achieve remarkable performance across many NLP tasks 

[6,16,18]. It not only improves model accuracy, factuality, consistency, and safety and 

mitigates harm and bias within medical question-answering tasks [6], but also bridges the gap 

between LLM-generated answers and human responses. Therefore, RLHF brings LLMs 

considerably closer to practical applications within real-world clinical settings. 

3.2.3. Prompt Engineering 

Prompt engineering refines prompts for generative AI to generate text or images, often through 

an iterative refinement process. To date, five instruction prompts have been reported: zero-

shot, few-shot, chain-of-thought, self-consistency, and ensemble refinement learning. 

Zero-shot learning enables the training of LLMs for specific NLP tasks through singleprompt 

instructions, eliminating the need for annotated data [23]; e.g., people enter instructions into 

‘prompt’ to seek answers from ChatGPT. This approach avoids the issue of catastrophic 

forgetting often encountered in fine-tuned neural networks, as it does not require model 

parameter updates [24]. Recent studies, such as those by Zhong et al.,  affirm the efficacy of 

LLM’s zero-shot learning in various traditional natural language understanding tasks [25]. 

3.3. Model Evaluation 

Three challenges impede the application of LLMs in modeling real-world tasks [1]: (1) 

noisy/unstructured real-world input data that are often messy, e.g., containing typos, 

colloquialisms, and mixed languages; (2) ill-defined practical tasks that are difficult to classify 

into predefined NLP task categories; and (3) ambiguous instructions that may contain multiple 

implicit intents. These ambiguities cause difficulty in predictive modelling without follow-up 

probing questions. Despite performing better than the fine-tuned models in addressing the 

above three challenges, the effectiveness of foundation models in handling real-world input 

data is yet to be evaluated [1,6]; therefore, Bommasani et al. calls for a  holistic evaluation of 

LLMs [31]. 

3.4. Current Applications of Generative AI and LLMs in Healthcare and Medicine 

There is tremendous potential for LLMs to innovate information management, education, and 

communication in healthcare and medicine [7]. Li et al. proposed a taxonomy to classify 

ChatGPT’s utility in healthcare and medicine based on two criteria: (1) the nature of medical 

tasks that LLMs address and (2) the targeted end users [34]. According to the first criterion, 

seven types of ChatGPT applications were outlined: triage, translation, medical research, 

clinical workflow, medical education, consultation, and multimodal. Conversely, the second 

criterion delineates seven categories of end users: patients/relatives, healthcare 

professionals/clinical centers, payers, researchers, students/teachers/exam agencies, and 

lawyers/regulators. 

A use case of LLMs to support the medical task of triage [34] is assisting healthcare 

professionals in condensing a patient’s hospital stay into succinct summaries based on their  

medical records, then generating discharge letters [35], benefiting from these models’ strong 

ability to summarize data from heterogeneous sources [36]. A useful application of LLM to  

improve clinical workflow is to significantly reduce the documentation burden that has long 

plagued doctors and nurses, a problem that persisted even after the transition from paper to 

electronic health records [37]. Importantly, LLM can improve interpretability [1], a vital goal 
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in health data management. Therefore, they have the potential to lead to remarkable 

improvements in healthcare safety, quality, and efficiency. 

3.5. The Benefits of Generative AI and LLMs for Healthcare and Medicine 

The application of generative AI and LLMs in healthcare and medicine remains predominantly 

within the academic research stage [43]. There are various cases delineate preliminary efforts 

in the exploration of generative AI within these fields.  

 Creating Synthetic Patient Health Records to Improve Downstream Clinical Text 

Mining 

 Using Chatbot Underpinned by LLMs to Assist Health Communication 

 Potential to Address Routine Patient Queries following Routine Surgery 

 Improving Accuracy in Medical Image Analysis 

 Potential to Provide Ongoing Clinical Decision Support throughout the Entire Clinical 

Workflow 

 Fine-Tuning Local Large Language Models for Pathology Data Extraction and 

Classification 

4. Conclusions 

This article examines the transformative potential of generative AI and LLMs in healthcare and 

medicine. It delves into the foundational mechanisms, diverse applications, learned insights, 

and the ethical and legal considerations associated with these technologies, highlighting the 

unique role of RLHF in model development. A limitation of this scoping review is its non-

exhaustive nature, as it does not conduct a comprehensive, systematic appraisal of all the extant 

literature during the specific time period. The inclusion of numerous papers from arXiv that 

have not undergone rigorous peer review could potentially reduce the research’s rigor. 

Unlike traditional rule-based AI, these contemporary technologies empower domain experts 

and necessitate collaborative co-design process involving both clinicians and consumers. 

Global efforts are centered on exploring numerous opportunities and challenges in areas such 

as ethics, transparency, legal implications, safety, and bias mitigation. The promise for 

improving healthcare quality, safety, and efficiency is significant. Healthcare organizations 

should actively engage with these technologies while upholding ethical standards. 
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