
International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 62

AMCAL: APPROXIMATE MULTIPLIER WITH THE CONFIGURABLE ACCURACY

LEVELS FOR IMAGE PROCESSING AND CONVOLUTIONAL NEURAL NETWORK

Rana Fatima1, Dr. M. Pavithra Jyothi2

1PG Scholar, Department of VLSI, Shadan Women’s College of Engineering and Technology, Hyderabad,

ranafatima2485@gmail.com
2Associate Professor, Department of ECE, Shadan Women’s College of Engineering and Technology.

m.pavithrajyothi@gmail.com

ABSTRACT

In machine learning algorithms and signal processing, multiplication is an essential arithmetic operation. In

order to achieve energy and space reductions, this research suggests a unique technique called Approximate Multiplier

with Configurable Accuracy Levels (AMCAL). The suggested approach manipulates the leftover bits and truncates

the least significant bits to carry out the multiplication operation. The remaining input bits have been manipulated

using a smaller bit width in order to minimize or eliminate the error that results from truncating the bits. Additionally,

it has demonstrated that, in contrast to other algorithms, we are less concerned with the size of the mistake introduced

into the input. When compared to the Wallace multiplier, the suggested AMCAL multiplier reduces energy usage by

86.7%, with an error margin of 0.15%. Furthermore, the suggested multiplier performs better than other approximate

multipliers in the same class, including DRUM and DSM, in terms of latency, power, and area. In terms of power and

area efficiency, the AMCAL multiplier outperforms modern approximation multipliers like DSI and TOSAM. Lastly,
it is demonstrated that the picture quality produced by four image processing programs—smoothing, sharpening, JPEG

encoding, and face alignment—is unaffected by such a little computational mistake.

INTRODUCTION

Enhancing the functionality and lowering the

power consumption of digital circuits have gained more

attention as a result of the rapid expansion of portable

electronics like smartphones and other gadgets.

However, the processors in these devices' cores feature

computational units that are essential to carrying out

various tasks.
One technique to improve efficiency and lower the

power consumption of computing units is to use

approximation computation for arithmetic operations.

Because certain applications may tolerate erroneous

results, the idea of approximation computation was born.

To put it another way, these calculations may be used to

programs that are robust against errors while they are

operating. For instance, [1] mentions that certain devices

exhibit error resistance and are insensitive to input

accuracy. According to the authors in [2], approximation

circuits can be used in programs when the mistake is
recognized in a region that is unintelligible to humans,

such wireless communications or video and audio

programs. A certain amount of approximation won't be

too harmful because digital signal processing devices

already get a lot of noise from their surroundings,

according to [3]. Additionally, approximation circuits

that allow the computational blocks to adjust their

accuracy level based on the output's needed precision

have been provided by [4] and [5].

From the algorithm level to the transistor level, digital

circuit designers have been working to decrease the

space, power, and latency of processing blocks in recent
years. In recent years, algorithms in artificial intelligence

and neural networks [6]–[8] have presented power issues

because of their high processing demands, opening the

door for the inclusion of approximations in these

programs. Since multiplications account for the biggest

portion of all operations in the arithmetic logic unit

(adders, multipliers, and dividers), which forms the basis

of computing blocks, the approximation multiplier is the

main focus of this work [9]. Multipliers are a desirable

option for enhancing design characteristics with
approximation circuits because of their high space and

power consumption costs.

Fig 1. Overall flow diagram of AMCAL multiplier

model.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 63

Four categories may be used to group computational

circuit approximation approaches, according to [10]:

1. Voltage scaling that is aggressive [11], [12]

2. Bit width truncation [5, 13, 14].

3. Making use of rough construction pieces [15], [16]
4. Stochastic computing usage [17], [18]

In order to lower energy usage, Chippa et al.

[11] and Zervakis et al. [12] looked at hardware and

architecture for aggressive voltage scaling. By truncating

bit width and rounding multiplier inputs, Vahdat et al. [5]

devised a technique that drastically decreases power and

area in exchange for an output inaccuracy in the range of

0.3 to 11%. A 4:2 compressor was created by Ansari et

al. [15] and Zakian et al. [16] in order to build two 4×4

multipliers with varying accuracies. They then utilized

them as the fundamental components of 32x32 and
16x16 multipliers. Stochastic computing (SC), an

unorthodox computation technique that considers data as

probabilities, is used by Alaghi et al. [17]. SC is very

tolerant of soft faults and makes advantage of massively

parallel systems. Low precision, sluggish processing,

and intricate design requirements are some of its

disadvantages.

The fact that multiplication algorithms apply the

identical operation to both inputs is one of its drawbacks.

Using this method may result in substantial input

mistakes that cause considerable output errors. An error
detection and correction block may solve the problem,

but it would increase the latency and power

consumption. [5, 19, 20]. In contrast to DSM [19] and

DRUM [20], we are less concerned with input mistakes

in this article. Regardless of the magnitude of the

mistake, the design has been developed to ensure that its

impact on the output error is, for the most part, negligible

or neutral. For instance, when the two values are

multiplied, the mistake in the output is 0.05%, meaning

that the effect of the error is 36 times lower, even if the

input error was 1.8%. The output error for DSM4 and

DRUM4 is 7.2% and 2.1%, respectively, given these
inputs.

Additionally, working with beginning bits is inefficient

because the estimated value will be displayed at the

output. Therefore, it is possible to reduce the

approximation effects on the output by adjusting the

input bits.

Our suggested algorithm's competitive edge is

that it has been much enhanced in terms of performance

since the remaining bits of the inputs compensate for the

impacts of the shortened bits without the need for extra

error detection and correction blocks area, power, and
delay. Bit truncation serves as the foundation for the

multiplication operation in the suggested approach. In

this manner, the most significant bit equal to "1" is

chosen from each n-bit input, and the remaining bits are

truncated. The two m-bit and 2-bit portions of these m+2

bits are then separated. Ultimately, the remaining two

least significant bits are used to alter the m most

significant bits from the selected m+2 bits to create m'

bits.

Due to this modification, the mistakes of individual
inputs are not added together when these m' bits from

input A are multiplied by m' bits from input B; rather,

they neutralize each other's faults. In contrast, the

characteristics of power, area, and delay are greatly

enhanced due to m≪n. The AMCAL multiplier model's

overall flow diagram is seen in Fig. 1.

LITERATURE SURVEY

This section provides a quick overview of some

of the earlier research in the area of approximation

multipliers. Two approaches were presented by Parekh et
al. [13]. The first approach selects a few bits from the

most important input bits and then performs

multiplication, based on the idea that it is not essential to

use all of the input bits to multiply roughly. The number

of bits chosen from the inputs is regarded as floating in

the second approach. The secondary input bits are chosen

based on the number of primary input bits that are

occupied. Lastly, they assert that 32-bit and 64-bit

multipliers have much lower power and area. An

approximate 4:2 compressor was created by Ansari et al.

[15] in order to build two 4×4 multipliers with different
levels of precision. They then demonstrated a 44%

improvement in the product of power and latency by

using them as building pieces for 16×16 and 32×32

multipliers. Lastly, for the first time, they looked at the

performance of their suggested multiplier in MIMO

antenna communication systems.

Stochastic computing is used by Alaghi et al. [17] to

handle data as probabilities. Conventional logic circuits

are used to create and analyze N-bit stochastic numbers

(SNs), where each bit is typically randomly selected to

be 1 with a probability 𝑃𝑋. They conclude by looking at
stochastic computing in terms of accuracy and mistakes,

expenses associated with size and speed, design

concerns, circuit-level elements, and applications.

The Truncation and Rounding-Based Scalable

Approximate Multiplier (TOSAM), which was proposed

by Vahdat et al. [4], multiplies the remaining bits by a

sequence of adds and shifts. Their results, which are

based on modeling and synthesis in 45 nm technology,

show that an output error of 0.3–11% may be obtained in

exchange for a 98%, 90%, and 41% reduction in power,

area, and latency, respectively. The DSI approximate

multiplier, a customizable approximate multiplier based
on the idea that each incoming bit may be split into three

parts—direct, search, and ignore—was recently

developed by Hajizadeh et al. [5]. They showed that their

approach, which involves operand swapping and the

insertion of the Ex. bit, significantly reduced the average

mistake rate when compared to earlier methods.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 64

The DSM multiplier was first presented by

Narayanamoorthy et al. [19] by truncating the least

significant bits, greatly lowering the input bit width, and

enhancing power, area, and delay. Like DSM, DRUM

was introduced by Hashemi et al. [20]. To increase
accuracy, it truncates the least significant bits and adds a

bit with the value "1" to the end of the truncated bits

before they reach the multiplier.

The AMCAL multiplier circuit will be contrasted with

DSM [19] and DRUM [20] multipliers to illustrate its

benefit, as the construction of the multiplier suggested in

this study is likewise predicated on truncating the least

important bits. Furthermore, we will contrast our

suggested multiplier with two novel multipliers that

employ an algorithm distinct from AMCAL: TOSAM [4]

and DSI [5]. Additionally, we contrast the sign

multiplication mode with TOSAM, DRUM, and ROBA
[21] multipliers.

Several approximation designs for calculating

the FFT are shown in this work. The word length is

changed at each computing step to accomplish the

balance between accuracy and performance. There are

two suggested algorithms for changing the word length

within a certain error margin. In contrast to the traditional

fixed design, the first method aims for an approximation

FFT for an area-limited design; the second approach

focuses on performance in order to reach a higher

operating frequency. Both of the suggested techniques
demonstrate that it is feasible to achieve an effective

stage-level balance between performance and hardware

consumption. Experimental findings demonstrate that

the first approximation technique reduces hardware

consumption by at least almost 40% when the suggested

approximate FFT designs are implemented on FPGA.

The second method improves the designs' performance

by more than 20%. In comparison to a coarse design, the

FPGA resources required for a 256-point FFT calculation

may be further decreased by over 10% with fine

granularity design, which is currently being studied.

Lastly, a feature extraction module in a separate word
recognition system is implemented using the suggested

approximate designs; the Mel frequency cepstrum

coefficients (MFCC) extraction module's LUT and FF

counts are reduced by up to 47.2% and 39.0%,

respectively, with a power reduction of up to 27.0% at a

less than 2% accuracy loss.

The truncation-and-rounding-based scalable

approximate multiplier (TOSAM) is a scalable

approximate multiplier that truncates each input operand

according to its leading one-bit location, therefore

reducing the number of partial products. In contrast to
the precise multiplier, the suggested architecture

significantly reduces energy consumption and area

occupied by performing multiplication using shift, add,

and short fixed-width multiplication operations. The

multiplication part's input operands are rounded to the

closest odd value in order to increase overall accuracy.

The multiplier becomes scalable and the precision

becomes weakly reliant on the width of the input

operands due to the truncation of the input operands

depending on their leading one-bit locations. As the input
operand widths rise, more improvements may be made

to the design characteristics (such as area and energy

usage). The suggested approximate multiplier's

effectiveness is assessed by contrasting its design

parameters with those of an exact multiplier and a few

other recently suggested approximate multipliers. The

results show that when compared to the precise

multiplier, the suggested approximate multiplier with a

mean absolute relative error between 11% and 0.3%

reduces latency, area, and energy usage by up to 41%,

90%, and 98%, respectively. Additionally, it performs

better than other approximation multipliers in terms of
energy usage, speed, and area. The error distribution of

the suggested approximation multiplier is almost

Gaussian, and its mean value is close to zero. We take

advantage of it in applications for categorization,

sharpening, and the structure of a JPEG encoder. The

output's quality deterioration is minimal, according to the

results. Furthermore, depending on the minimum needed

accuracy, we propose an accuracy customizable TOSAM

in which the energy consumption of the multiplication

operation may be modified.

These days, machine learning algorithms and
automation techniques are essential in practically every

area. In this study, the probabilistic pruning approach is

used to mimic a 4:2 compressor circuit. For the suggested

4:2 compressor, an artificial neural network is created

and trained to achieve the test and train accuracies. The

best approximation circuit has been thought to be a

neural network with equal train and test accuracies.

Using the truth table of the suggested approximate 4:2

compressor as the dataset, a supervised machine learning

approach was used to train the neural network. With just

19 transistors, the suggested compressor uses less energy

(0.2015 nJ) and has a smaller silicon area (14.36 um2).
By substituting the suggested approximate 4:2

compressor into its partial product reduction step, the

Dadda multiplier's performance is enhanced.

 For portable multimedia devices using different

signal processing methods and architectures, low power

consumption is a crucial need. Humans can infer

valuable information from somewhat inaccurate outputs

in the majority of multimedia applications.

Consequently, we are not required to generate numerical

results that are precisely accurate. Prior work in this area

mostly uses voltage overscaling to leverage error
resilience, mitigating the ensuing faults with

computational and architectural strategies. In order to

exploit the relaxation of numerical precision, we suggest

in this study a different strategy: logic complexity

reduction at the transistor level. In order to illustrate this

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 65

idea, we suggest a number of approximate or imprecise

complete adder cells that are simpler at the transistor

level. We then use these cells to create approximation

multi-bit adders. Apart from the intrinsic decrease in

switching capacitance, our methods lead to noticeably
shorter critical pathways, which facilitate voltage

scaling. Using the suggested approximate arithmetic

units, we create designs for image and video

compression algorithms and test them to show how

effective our method is. Additionally, we establish basic

mathematical models for these approximation adders'

inaccuracy and power consumption. Additionally, we

show how useful these approximation adders are in two

digital signal processing systems with particular quality

constraints: the finite impulse response filter and the

discrete cosine transform. Comparing the suggested

approximation adders to current implementations that
use correct adders, simulation findings show power

savings of up to 69%.

Support for diverse DSP and classification

applications on energy-constrained devices has become

more important. These applications frequently use fixed-

point arithmetic to execute matrix multiplications in

large quantities while displaying tolerance for certain

computational faults. Therefore, increasing

multiplications' energy efficiency is essential. In this

short, we provide multiplier topologies that allow for the

trade-off between energy usage and computational
accuracy throughout design. With an average

computational error of about 1%, the suggested

multiplier can use 58% less energy per operation than a

precise multiplier. Lastly, we show that the accuracy of

classification applications and the quality of DSP are not

significantly affected by such a little computational

mistake.

PROPOSED METHODOLOGY

BLOCK DIAGRAM

Block diagram showing how the AMCAL unsigned

multiplier circuit is implemented.

The following is a summary of this paper's contributions:

 By altering the traditional multiplication method,

presenting a new multiplication scheme.

 Restructuring the algorithm used to determine the

leading bit's location to use less space and energy.

 Examining the lookup table to reduce the output

error by figuring out the manipulation instructions in

certain bits.

 Outlining three approximation multiplier hardware

solutions for signed and unsigned operations that
have adjustable accuracy levels (AMCAL).

 Examining the suggested multiplier's design settings

for face alignment, JPEG image compression, and

picture processing.

MODULE EXPLANATION:

A. AMCAL Multiplier Arithmetic for Multiplication

Certain current approximation multiplication algorithms

work under the assumption that the input will never

change; they either utilize an approximate adder, accept

the approximate output and use it to approximate the
building blocks of partial products, or they disregard

some pieces of the input [4], [15]. Our suggested

multiplication technique by small input variation makes

it possible to reduce the number of input bits more

effectively, which lowers the power, area, and latency of

the multiplier. The fundamental idea of the suggested

method is derived from (1):

Where 𝐸1 and 𝐸2 represent the adjustments we made to
the input values (which we will now refer to as input

errors). To get a reasonable approximation, the terms

𝐵𝐼1, 𝐴𝐸2, and 𝐸1𝐸2 must be eliminated. We used the

following method to do this:

1- The word E1E2 can be eliminated from (1) if we

choose input errors E1 and E2 so that E1E2

2. The phrase ±𝐵𝐸1±𝐴𝐸2 can be eliminated from (1) if

we choose input errors E1 and E2 so that the terms ±BE1

and ±AE2 cancel each other out. In order to do this, input

errors E1 and E2 must be directed in opposite directions
(positive and negative, or vice versa), and they must,

respectively, represent a proportion of inputs A and B

(Equation (2)).

When we replace (2) with (1), we obtain:

The words ±BEA∑AEB cancel each other out if the

equivalence x1=x2=x is true. If x1,x2≥100, the term

x1100x2100AB can be disregarded in relation to AB.

Thus, (3) becomes (4).

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 66

An illustration of the AMCAL multiplication algorithm's

steps for multiplying two integers is shown in FIG 2.

To minimize the space and power consumption, it is

erroneous to select 𝑥1 = 𝑥2 since two 𝑛-bit additions

must be done in addition to a single 𝑛-bit multiplication.

In order to address this problem, 𝑥1 𝑎𝑛𝑑 𝑥2 are chosen

in a way that maximizes the satisfaction of the two

aforementioned requirements while simultaneously

improving the power consumption, area, and delay.

In an n-bit number, the weight at each bit location drops

exponentially from the most significant bits to the least

significant bits. Consequently, we may take the input
value that contains just m most significant bits from the

original input and truncate the n-m least significant bits

using one of the two methods listed below:

1. Reduce the value of the input in comparison to its

original input by eliminating the n–m least significant

bits.

2. The sum of the remaining portion (the m most

significant bits) plus "1" is computed to raise the number

in relation to its starting value in order to restore the

inaccuracy brought on by deleting the n–m bits.

Interestingly, truncating the least significant bits in the

suggested approach is the same as adding an error to the

input; this is comparable to the values of 𝑥1 and 𝑥2 in

(2). Moreover, in order to meet the second criterion, one

of the inputs needs to be larger than its original value and

the other less than its initial value, meaning that E1 and

E2 have the opposite signs.

As more selected bits (m) are chosen, less error is
introduced into the inputs, resulting in lower values for

𝑥1 and 𝑥2. This lowers the values of the terms added in

(3) and makes it simpler to disregard those terms.

The implementation of the 32-bit LOD and Bit-selection

module for a=00000000|000001xx|xxxxxxxx|xxxxxxxx

when m=4 is shown in FIGURE 3.

The suggested multiplication method is seen in Fig. 2.
essentially converting the 16-bit inputs to 4-bit values by

manipulating them when m=4. Additionally, input B is

less than its starting value while input A increases in

value. As a result, the algorithm's requirements are all

met.

B. Hardware Implementation of AMCAL Multiplier

The suggested multiplier circuit uses the method shown

below, which is schematically shown in Fig. 4:

(1) The Leading-One Detector (LOD) Block receives the

n-bit inputs. Subsequently, the segment determination
block splits the n-bit input into four segments, each

containing a bit equal to "1" (n/4) bits. Next, the priority

encoder is used to create that segment's index.

(2) To create a n/4+m+1 bits number, the relevant (n/4)-

bit component is combined with m+1 bits from the right-

hand segment. The leftmost bit that equals "1" in the

chosen segment is then located by the position

determination block. Next, the priority encoder is used to

produce that position's index.

(3) The (n/4+m+1)-bit inputs are sent to the Bit Selection

block, which truncates the remaining bits and chooses

the m+2 bits from the leftmost bit equal to "1" found in
the previous stages (see to Fig. 3).

(4) By combining the #Segment and #Position priority

encoder outputs from each input, the values of ka and kb

are obtained. The amount of shift in the output is then

computed by summing these two figures.

(5) An adder is entered with the m-bit integer to be added

to "1".

(6) The Multiplexer block decides whether the m-bit

number should be approximated higher (by incrementing

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 67

it by "1") or stay constant by taking the two least

significant bits from the m+2 bits.

As seen in TABLE 1, the control bits for the Multiplexer

are acquired by consulting a lookup table. The estimated

input is then fed into a m×m multiplier after that.
(7) Based on the carry bits of the modified inputs A'm

and B'm, a multiplexer chooses one of its four inputs.

These four options are:

1 is the product of A'm and B'm,

2 is the shift of the input A'm left by m bits,

3 is the shift of the input B'm left by m bits, and

4 is the number 22m.

(8) A barrel shifter is used to show the produced product

as a 2n-bit integer.

Fig 5. The Bit-selection block and the LOD block

components

Since fewer AND and OR gates are required to perform

the LOD and Bit-selection block in this scenario than in

the case of splitting into 2, 8, or 16, four was the number

four chosen to divide the inputs in step 1. We require the

number of two-input OR gates given in (5) in order to

construct the LOD and Bit-selection block in our
suggested algorithm:

We also need the two-input AND gates in order to get the

number shown in (6).

In these Equations, S indicates the number of segments.

Also, OR gates and AND gates with k inputs have been

replaced with k-1 two-input gates. By searching for all
the available values for the variables s, n, and m, it can

be concluded that the lowest number of gates when n

equals 8 or 16 occurs at s=4. Also, when n equals 32, the

lowest number of gates occurs at s=8. Although using

s=8 would use the lowest number of gates when

operating in 32-bit mode, using s=4 would use almost

the same number of gates. As a result, we always divide
the input into 4 parts, s=4, for integrity and independence

from the number of input bits. Note that the value of m

has no bearing on the value of s for the lowest number of

gates.

C. Accuracy of AMCAL Multiplier

1) Parameters for measuring circuit performance:

The accuracy of diverse circuits is now faced with a new

issue as a result of the excessive decrease of circuit

complexity and delay. The many standards for assessing

approximate circuit performance are covered in this

section.

a) The mean error distance and error distance

The error distance (ED) is defined as the difference

between the precise product M and the approximate

product 𝑀′, where 𝐸𝐷=|𝑀′−𝑀|. The mean error distance

(MED) is the average of all ED values for all inputs. The

normalized mean error distance (NMED), where Mmax

is the maximum product value of an exact multiplier,

e.g., (2𝑛−1)2 for an n×n multiplier, must be used to

compare multipliers of different sizes.

b) Meaning of relative error and relative error

The relative error, represented by 𝑅𝐸𝐷 = |𝑀′−𝑀|/𝑀 =

𝐸𝐷/𝑀, may be utilized to more accurately compare

different circuits. Averaging all of the REDs for various

input combinations yields the mean relative error

(MRED) for an n×n multiplier.

Hence, given the inputs i = A and j = B, 𝑀𝑖𝑗′ and 𝑀𝑖𝑗 are

the approximation and precise multiplications,

respectively. Interestingly, when one of the inputs is 0,

MRED is defined as zero.

c) Both The Pass And Mistake Rates
The ratio of accurate outputs to total outputs is known as

the pass rate (PR), whereas the ratio of wrong outputs to

total outputs is known as the error rate (ER).

The suggested model will also be assessed using mean

squared error (MSE) and maximum error (Max ER), in

addition to MRED, MED, NMED, and PR. Error will

also be assessed using variance, error rate, and the

Hamming distance (ACCinf) [23].

Lastly, the cost function is created in accordance with

(10) to evaluate all parts of the algorithm simultaneously

as the number of distinct chosen bits m increases, much
like in [4]. It is preferable that the cost function have a

smaller value.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 68

𝐶𝐹=𝑀𝑅𝐸𝐷 ×𝐸𝑛𝑒𝑟𝑔𝑦 ×𝐷𝑒𝑙𝑎𝑦 ×𝐴𝑟𝑒𝑎

2) Parameters for measuring circuit performance:

As shown in (11), the maximum error is computed.

To get the greatest error, the terms (𝐴𝑇/𝐴−1) and

(𝐵𝑇/𝐵−1) must be maximized. The bits to be truncated,

the two least significant bits of the m+2 chosen bits, and

the m most significant bits of the input that have their

leftmost bit always equaling "1" must thus be separated

into three sections. According to this classification, rows

1, 2, 3, and 4 of Table 2 display, respectively, the forms

of inputs A and B that cause the maximum error, the
number of times the maximum error occurs, the value of

the maximum error, and the mean relative error when the

inputs are 32-bit and the number of input bits selected is

m=4.

D. Applications of Image Processing

When multiplier sizes change, error evaluation through

simulation and programming becomes much more time-

consuming. In error-resilient applications, the quality of

the approximation multiplier may be evaluated using

image processing techniques as picture smoothing and
sharpening.

As seen in (12), the highest signal-to-noise ratio serves

as another criterion for assessing the quality of the

reconstructed image in comparison to the original image.

where the numbers α (i,j) and β(i,j) stand for the number

of pixels in the original picture and the number of pixels
in the reconstructed image at location (i, j) with

dimensions m×n.

The picture smoothing procedure may be applied using

equation (13), as described in [21], where i and j stand

for the considered pixel.

Definition of the smoothing mask matrix used in [24]

An actual model of this 8-bit multiplier is created in

MATLAB and used to smooth images in order to assess

the suggested approach. It should be noted that the

current simulation analyzes the effects of approximation
multiplication by performing all other operations—such

as addition and subtraction—exactly. Additionally, the

MATLAB simulations of the DSM, DRUM, TOSAM,

and DSI models are used in conjunction with the

smoothing technique to quantify the quality of the picture

output using the parameters provided in [25] for the
peak-signal-to-noise ratio (PSNR) and mean structural

similarity index metric (MSSIM). Lastly, TABLE 11

presents the findings.

In addition to TOSAM(1,5) and DSI2, which have the

same error class as AMCAL3, it is compared to the

DRUM4 and DSM5 models, which have four and five

input bits, respectively, to highlight the benefit of

AMCAL having just three input bits for the

multiplication operation.

Image sharpening methods are another criteria for image

processing testing, and (15), as described in [21], can be

applied in this situation.

(16) defines the sharpening mask matrix [24].

Lastly, the MATLAB model is subjected to the picture

sharpening procedure in order to assess the quality

arising from the different operating classes of AMCAL.

From m=1 to m=8, eight operational classes are used to
analyze the impacts. Figure 11 displays the final photos.

As can be observed in the picture, the sharpening

algorithm does a good job at sharpening the edges of the

image in comparison to the original, and the decline in

image quality drops significantly as AMCAL4 and

higher.

In a different application, we used signed 16-bit

approximation multipliers in the discrete cosine

transform (DCT) unit and the JPEG method to compress

several pictures. Processing DCT calls for a lot of

addition and multiplication. The DCT precise

multiplication is replaced by the approximate
multipliers. To illustrate the benefit of S-AMCAL while

performing the multiplication operation with just four

input bits, we use the DRUM5 model, which has five

input bits. Furthermore, because S-ROBA and

TOSAM(2,6) belong to the same error class as S-

AMCAL4, they are chosen for comparison.

Comparing the compressed pictures to the original input

images, we were able to recover the PSNR and MSSIM,

The outcomes demonstrate that AMCAL4 performs

better in PSNR and MSSIM than its rivals.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 69

RESULTS & DISCUSSION

Fig 1: Utilization Summary Report

Fig 2: RTL Schematic (Gate-Level)

Fig 3: RTL Schematic (Gate-Level)

Fig 4. TTL Schematic

Fig 5: Timing Summary

Fig 6: Simulation Results

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 70

CONCLUSION

In the current work, an approximation

multiplier known as AMCAL was presented. It is

significantly more accurate than multipliers in the same

class and requires less power and space. This multiplier
operates on the premise of altering the input bits by

lowering their number before to entering the main

multiplier while preserving the range of error tolerance.

You may use this multiplier for both signed and unsigned

multiplication. We looked into eight different ways to

apply this multiplier. By contrasting it with a number of

precise and approximative multipliers that were created

with varying design parameters, the suggested

multiplier's effectiveness was assessed.

The results show that in all design parameters, the

AMCAL architecture outperforms the Wallace exact

multiplier, and in the majority of design parameters, it
outperforms the DSM and DRUM approximation

multipliers. The suggested multiplier has a larger delay

parameter than the adjustable approximation multipliers

TOSAM and DSI, but it performs better in terms of

power and area parameters. Finally, four image

processing programs—image sharpening, image

smoothing, JPEG image compression, and face

alignment—were used to test the suggested multiplier.

REFERENCES

[1] Gupta, Puneet, Yuvraj Agarwal, Lara Dolecek, Nikil
Dutt, Rajesh K. Gupta, Rakesh Kumar, Subhasish Mitra,

et al. "Under-designed and opportunistic computing in

the presence of hardware variability." Computer-Aided

Design of Integrated Circuits and Systems, IEEE

Transactions on 32, no. 1,8-23, 2013.

[2] Liu, Weiqiang, et al. "Approximate designs for fast

Fourier transform (FFT) with application to speech

recognition." IEEE Transactions on Circuits and Systems

I: Regular Papers 66.12 (2019): 4727-4739.

[3] Venkatesan, Rangharajan, Amit Agarwal, Kaushik

Roy, and Anand Raghunathan. "MACACO: Modeling

and analysis of circuits for approximate computing." In
Proceedings of the International Conference on

Computer-Aided Design, pp. 667-673. IEEE Press, 2011.

[4] Vahdat, Shaghayegh, et al. "TOSAM: An Energy-

Efficient Truncation-and Rounding-Based Scalable

Approximate Multiplier." IEEE Transactions on Very

Large-Scale Integration (VLSI) Systems 27.5 (2019):

1161-1173.

[5] Hajizadeh, Fahimeh, et al. "Configurable DSI

partitioned approximate multiplier." Future Generation

Computer Systems 115 (2021): 100-114.

[6] Cardarilli, Gian Carlo, et al. "Approximated
computing for low power Neural Networks."

Telkomnika 17.3 (2019): 1236-1241.

[7] Zervakis, Georgios, et al. "Approximate Computing

for ML: State-of-the-art, Challenges, and Visions." 2021

26th Asia and South Pacific Design Automation

Conference (ASP-DAC). IEEE, 2021.

[8] Maddisetti, Lavanya, Ranjan K. Senapati, and J. V. R.

Ravindra. "Accuracy evaluation of a trained neural

network by energy efficient approximate 4: 2
compressor." Computers & Electrical Engineering 92

(2021): 107137.

[9] V. Gupta, D. Mohapatra, A. Raghunathan, and K.

Roy, "Low-power digital signal processing using

approximate adders," IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137,

Jan. 2013.

[10] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T.

Park, and N. S. Kim, "Energy-efficient approximate

multiplication for digital signal processing and

classification applications," IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–1184,
Jun. 2015.

[11] Liu, Bo, et al. "A Reconfigurable Approximate

Computing Architecture With Dual-VDD for Low-

Power Binarized Weight Network Deployment." IEEE

Transactions on Circuits and Systems II: Express Briefs

70.1 (2022): 291-295.

[12] Zervakis, Georgios, et al. "Multi-level approximate

accelerator synthesis under voltage island constraints."

IEEE Transactions on Circuits and Systems II: Express

Briefs 66.4 (2018): 607-611.

[13] Parekh, Prashil, Samidh Mehta, and Pravin Mane.
"Truncation Based Approximate Multiplier For Error

Resilient Applications." International Journal of

Electronics Letters (2021): 1-12.

[14] Gu, Fang-Yi, Chao Lin, and Jia-Wei Lin. "A Low-

Power and High-Accuracy Approximate Multiplier With

Reconfigurable Truncation." IEEE Access 10 (2022):

60447-60458.

[15] Ansari, Mohammad Saeed, et al. "Low-power

approximate multipliers using encoded partial products

and approximate compressors." IEEE Journal on

Emerging and Selected Topics in Circuits and Systems

8.3 (2018): 404-416.
[16] Sayadi, Ladan, Somayeh Timarchi, and Akbar

Sheikh-Akbari. "Two Efficient Approximate Unsigned

Multipliers by Developing New Configuration for

Approximate 4: 2 Compressors." IEEE Transactions on

Circuits and Systems I: Regular Papers (2023).

[17] Alaghi, Armin, Weikang Qian, and John P. Hayes.

"The promise and challenge of stochastic computing."

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 37.8 (2017): 1515-1531.

[18] Najafi, M. Hassan, and Mostafa E. Salehi. "A fast

fault-tolerant architecture for sauvola local image
thresholding algorithm using stochastic computing."

IEEE Transactions on Very Large-Scale Integration

(VLSI) Systems 24.2 (2015): 808-812.

[19] Narayanamoorthy, Srinivasan, et al. "Energy-

efficient approximate multiplication for digital signal

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)
Vol 24 Issue 12, DEC, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 71

processing and classification applications." IEEE

transactions on very large scale integration (VLSI)

systems 23.6 (2014): 1180-1184.

[20] Hashemi, Soheil, R. Bahar, and Sherief Reda.

"DRUM: A dynamic range unbiased multiplier for
approximate applications." Proceedings of the

IEEE/ACM international conference on computer-aided

design. IEEE Press, 2015

[21] Zendegani, Reza, et al. "RoBA multiplier: A

rounding-based approximate multiplier for high-speed

yet energy-efficient digital signal processing." IEEE

Transactions on Very Large-Scale Integration (VLSI)

Systems 25.2 (2016): 393-401.

[22] Nangate 45nm Open Cell Library. [Online].

Available: http://www.nangate.com/

[23] A. B. Kahng and S. Kang, "Accuracy-configurable

adder for approximate arithmetic designs," in Proc. 49th
Design Autom. Conf. (DAC), Jun. 2012, pp. 820–825.

[24] Myler, Harley R., and Arthur R. Weeks. The pocket

handbook of image processing algorithms in C. Prentice

Hall Press, 2009.

[25] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.

Simoncelli, "Image quality assessment: From error

visibility to structural similarity," IEEE Trans. Image

Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[26] Jiang, Honglan, et al. "Approximate arithmetic

circuits: A survey, characterization, and recent

applications." Proceedings of the IEEE 108.12 (2020):
2108-2135.

[27] Zhang, Zhanpeng, et al. "Facial landmark detection

by deep multi-task learning." European conference on

computer vision. Springer, Cham, 2014.

[28] Kingma, Diederik P., and Jimmy Ba. "Adam: A

method for stochastic optimization." arXiv preprint

arXiv:1412.6980 (2014).

[29] Watchareeruetai, Ukrit, et al. "LOTR: Face

Landmark Localization Using Localization

Transformer." IEEE Access 10 (2022): 16530-16543.

[30] Koestinger, Martin, et al. "Annotated facial

landmarks in the wild: A large-scale, real-world database
for facial landmark localization." 2011 IEEE

international conference on computer vision workshops

(ICCV workshops). IEEE, 2011.

[31] E. Bisong, Google colaboratory, in: Building

Machine Learning and Deep Learning Models on Google

Cloud Platform, Springer, 2019, pp. 59–64

http://www.ijesat.com/

