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ABSTRACT   

In machine learning algorithms and signal processing, multiplication is an essential arithmetic operation. In 

order to achieve energy and space reductions, this research suggests a unique technique called Approximate Multiplier 

with Configurable Accuracy Levels (AMCAL). The suggested approach manipulates the leftover bits and truncates 

the least significant bits to carry out the multiplication operation. The remaining input bits have been manipulated 

using a smaller bit width in order to minimize or eliminate the error that results from truncating the bits. Additionally, 

it has demonstrated that, in contrast to other algorithms, we are less concerned with the size of the mistake introduced 

into the input. When compared to the Wallace multiplier, the suggested AMCAL multiplier reduces energy usage by 

86.7%, with an error margin of 0.15%. Furthermore, the suggested multiplier performs better than other approximate 

multipliers in the same class, including DRUM and DSM, in terms of latency, power, and area. In terms of power and 

area efficiency, the AMCAL multiplier outperforms modern approximation multipliers like DSI and TOSAM. Lastly, 
it is demonstrated that the picture quality produced by four image processing programs—smoothing, sharpening, JPEG 

encoding, and face alignment—is unaffected by such a little computational mistake. 

 

INTRODUCTION 

Enhancing the functionality and lowering the 

power consumption of digital circuits have gained more 

attention as a result of the rapid expansion of portable 

electronics like smartphones and other gadgets. 

However, the processors in these devices' cores feature 

computational units that are essential to carrying out 

various tasks.  
One technique to improve efficiency and lower the 

power consumption of computing units is to use 

approximation computation for arithmetic operations. 

Because certain applications may tolerate erroneous 

results, the idea of approximation computation was born. 

To put it another way, these calculations may be used to 

programs that are robust against errors while they are 

operating. For instance, [1] mentions that certain devices 

exhibit error resistance and are insensitive to input 

accuracy. According to the authors in [2], approximation 

circuits can be used in programs when the mistake is 
recognized in a region that is unintelligible to humans, 

such wireless communications or video and audio 

programs. A certain amount of approximation won't be 

too harmful because digital signal processing devices 

already get a lot of noise from their surroundings, 

according to [3]. Additionally, approximation circuits 

that allow the computational blocks to adjust their 

accuracy level based on the output's needed precision 

have been provided by [4] and [5].  

From the algorithm level to the transistor level, digital 

circuit designers have been working to decrease the 

space, power, and latency of processing blocks in recent 
years. In recent years, algorithms in artificial intelligence 

and neural networks [6]–[8] have presented power issues 

because of their high processing demands, opening the 

door for the inclusion of approximations in these 

programs. Since multiplications account for the biggest 

portion of all operations in the arithmetic logic unit 

(adders, multipliers, and dividers), which forms the basis 

of computing blocks, the approximation multiplier is the 

main focus of this work [9]. Multipliers are a desirable 

option for enhancing design characteristics with 
approximation circuits because of their high space and 

power consumption costs.  

 
Fig 1. Overall flow diagram of AMCAL multiplier 

model. 
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Four categories may be used to group computational 

circuit approximation approaches, according to [10]:  

1. Voltage scaling that is aggressive [11], [12]  

2. Bit width truncation [5, 13, 14].  

3. Making use of rough construction pieces [15], [16]  
4. Stochastic computing usage [17], [18]  

 

In order to lower energy usage, Chippa et al. 

[11] and Zervakis et al. [12] looked at hardware and 

architecture for aggressive voltage scaling. By truncating 

bit width and rounding multiplier inputs, Vahdat et al. [5] 

devised a technique that drastically decreases power and 

area in exchange for an output inaccuracy in the range of 

0.3 to 11%. A 4:2 compressor was created by Ansari et 

al. [15] and Zakian et al. [16] in order to build two 4×4 

multipliers with varying accuracies. They then utilized 

them as the fundamental components of 32x32 and 
16x16 multipliers. Stochastic computing (SC), an 

unorthodox computation technique that considers data as 

probabilities, is used by Alaghi et al. [17]. SC is very 

tolerant of soft faults and makes advantage of massively 

parallel systems. Low precision, sluggish processing, 

and intricate design requirements are some of its 

disadvantages. 

The fact that multiplication algorithms apply the 

identical operation to both inputs is one of its drawbacks. 

Using this method may result in substantial input 

mistakes that cause considerable output errors. An error 
detection and correction block may solve the problem, 

but it would increase the latency and power 

consumption. [5, 19, 20]. In contrast to DSM [19] and 

DRUM [20], we are less concerned with input mistakes 

in this article. Regardless of the magnitude of the 

mistake, the design has been developed to ensure that its 

impact on the output error is, for the most part, negligible 

or neutral. For instance, when the two values are 

multiplied, the mistake in the output is 0.05%, meaning 

that the effect of the error is 36 times lower, even if the 

input error was 1.8%. The output error for DSM4 and 

DRUM4 is 7.2% and 2.1%, respectively, given these 
inputs.  

Additionally, working with beginning bits is inefficient 

because the estimated value will be displayed at the 

output. Therefore, it is possible to reduce the 

approximation effects on the output by adjusting the 

input bits.  

Our suggested algorithm's competitive edge is 

that it has been much enhanced in terms of performance 

since the remaining bits of the inputs compensate for the 

impacts of the shortened bits without the need for extra 

error detection and correction blocks area, power, and 
delay. Bit truncation serves as the foundation for the 

multiplication operation in the suggested approach. In 

this manner, the most significant bit equal to "1" is 

chosen from each n-bit input, and the remaining bits are 

truncated. The two m-bit and 2-bit portions of these m+2 

bits are then separated. Ultimately, the remaining two 

least significant bits are used to alter the m most 

significant bits from the selected m+2 bits to create m' 

bits.  

Due to this modification, the mistakes of individual 
inputs are not added together when these m' bits from 

input A are multiplied by m' bits from input B; rather, 

they neutralize each other's faults. In contrast, the 

characteristics of power, area, and delay are greatly 

enhanced due to m≪n. The AMCAL multiplier model's 

overall flow diagram is seen in Fig. 1. 

 

LITERATURE SURVEY 

This section provides a quick overview of some 

of the earlier research in the area of approximation 

multipliers. Two approaches were presented by Parekh et 
al. [13]. The first approach selects a few bits from the 

most important input bits and then performs 

multiplication, based on the idea that it is not essential to 

use all of the input bits to multiply roughly. The number 

of bits chosen from the inputs is regarded as floating in 

the second approach. The secondary input bits are chosen 

based on the number of primary input bits that are 

occupied. Lastly, they assert that 32-bit and 64-bit 

multipliers have much lower power and area. An 

approximate 4:2 compressor was created by Ansari et al. 

[15] in order to build two 4×4 multipliers with different 
levels of precision. They then demonstrated a 44% 

improvement in the product of power and latency by 

using them as building pieces for 16×16 and 32×32 

multipliers. Lastly, for the first time, they looked at the 

performance of their suggested multiplier in MIMO 

antenna communication systems.  

Stochastic computing is used by Alaghi et al. [17] to 

handle data as probabilities. Conventional logic circuits 

are used to create and analyze N-bit stochastic numbers 

(SNs), where each bit is typically randomly selected to 

be 1 with a probability 𝑃𝑋. They conclude by looking at 
stochastic computing in terms of accuracy and mistakes, 

expenses associated with size and speed, design 

concerns, circuit-level elements, and applications. 

The Truncation and Rounding-Based Scalable 

Approximate Multiplier (TOSAM), which was proposed 

by Vahdat et al. [4], multiplies the remaining bits by a 

sequence of adds and shifts. Their results, which are 

based on modeling and synthesis in 45 nm technology, 

show that an output error of 0.3–11% may be obtained in 

exchange for a 98%, 90%, and 41% reduction in power, 

area, and latency, respectively. The DSI approximate 

multiplier, a customizable approximate multiplier based 
on the idea that each incoming bit may be split into three 

parts—direct, search, and ignore—was recently 

developed by Hajizadeh et al. [5]. They showed that their 

approach, which involves operand swapping and the 

insertion of the Ex. bit, significantly reduced the average 

mistake rate when compared to earlier methods. 
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The DSM multiplier was first presented by 

Narayanamoorthy et al. [19] by truncating the least 

significant bits, greatly lowering the input bit width, and 

enhancing power, area, and delay. Like DSM, DRUM 

was introduced by Hashemi et al. [20]. To increase 
accuracy, it truncates the least significant bits and adds a 

bit with the value "1" to the end of the truncated bits 

before they reach the multiplier.  

The AMCAL multiplier circuit will be contrasted with 

DSM [19] and DRUM [20] multipliers to illustrate its 

benefit, as the construction of the multiplier suggested in 

this study is likewise predicated on truncating the least 

important bits. Furthermore, we will contrast our 

suggested multiplier with two novel multipliers that 

employ an algorithm distinct from AMCAL: TOSAM [4] 

and DSI [5]. Additionally, we contrast the sign 

multiplication mode with TOSAM, DRUM, and ROBA 
[21] multipliers.  

Several approximation designs for calculating 

the FFT are shown in this work. The word length is 

changed at each computing step to accomplish the 

balance between accuracy and performance. There are 

two suggested algorithms for changing the word length 

within a certain error margin. In contrast to the traditional 

fixed design, the first method aims for an approximation 

FFT for an area-limited design; the second approach 

focuses on performance in order to reach a higher 

operating frequency. Both of the suggested techniques 
demonstrate that it is feasible to achieve an effective 

stage-level balance between performance and hardware 

consumption. Experimental findings demonstrate that 

the first approximation technique reduces hardware 

consumption by at least almost 40% when the suggested 

approximate FFT designs are implemented on FPGA. 

The second method improves the designs' performance 

by more than 20%. In comparison to a coarse design, the 

FPGA resources required for a 256-point FFT calculation 

may be further decreased by over 10% with fine 

granularity design, which is currently being studied. 

Lastly, a feature extraction module in a separate word 
recognition system is implemented using the suggested 

approximate designs; the Mel frequency cepstrum 

coefficients (MFCC) extraction module's LUT and FF 

counts are reduced by up to 47.2% and 39.0%, 

respectively, with a power reduction of up to 27.0% at a 

less than 2% accuracy loss. 

The truncation-and-rounding-based scalable 

approximate multiplier (TOSAM) is a scalable 

approximate multiplier that truncates each input operand 

according to its leading one-bit location, therefore 

reducing the number of partial products. In contrast to 
the precise multiplier, the suggested architecture 

significantly reduces energy consumption and area 

occupied by performing multiplication using shift, add, 

and short fixed-width multiplication operations. The 

multiplication part's input operands are rounded to the 

closest odd value in order to increase overall accuracy. 

The multiplier becomes scalable and the precision 

becomes weakly reliant on the width of the input 

operands due to the truncation of the input operands 

depending on their leading one-bit locations. As the input 
operand widths rise, more improvements may be made 

to the design characteristics (such as area and energy 

usage). The suggested approximate multiplier's 

effectiveness is assessed by contrasting its design 

parameters with those of an exact multiplier and a few 

other recently suggested approximate multipliers. The 

results show that when compared to the precise 

multiplier, the suggested approximate multiplier with a 

mean absolute relative error between 11% and 0.3% 

reduces latency, area, and energy usage by up to 41%, 

90%, and 98%, respectively. Additionally, it performs 

better than other approximation multipliers in terms of 
energy usage, speed, and area. The error distribution of 

the suggested approximation multiplier is almost 

Gaussian, and its mean value is close to zero. We take 

advantage of it in applications for categorization, 

sharpening, and the structure of a JPEG encoder. The 

output's quality deterioration is minimal, according to the 

results. Furthermore, depending on the minimum needed 

accuracy, we propose an accuracy customizable TOSAM 

in which the energy consumption of the multiplication 

operation may be modified.  

These days, machine learning algorithms and 
automation techniques are essential in practically every 

area. In this study, the probabilistic pruning approach is 

used to mimic a 4:2 compressor circuit. For the suggested 

4:2 compressor, an artificial neural network is created 

and trained to achieve the test and train accuracies. The 

best approximation circuit has been thought to be a 

neural network with equal train and test accuracies. 

Using the truth table of the suggested approximate 4:2 

compressor as the dataset, a supervised machine learning 

approach was used to train the neural network. With just 

19 transistors, the suggested compressor uses less energy 

(0.2015 nJ) and has a smaller silicon area (14.36 um2). 
By substituting the suggested approximate 4:2 

compressor into its partial product reduction step, the 

Dadda multiplier's performance is enhanced.  

 For portable multimedia devices using different 

signal processing methods and architectures, low power 

consumption is a crucial need. Humans can infer 

valuable information from somewhat inaccurate outputs 

in the majority of multimedia applications. 

Consequently, we are not required to generate numerical 

results that are precisely accurate. Prior work in this area 

mostly uses voltage overscaling to leverage error 
resilience, mitigating the ensuing faults with 

computational and architectural strategies. In order to 

exploit the relaxation of numerical precision, we suggest 

in this study a different strategy: logic complexity 

reduction at the transistor level. In order to illustrate this 
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idea, we suggest a number of approximate or imprecise 

complete adder cells that are simpler at the transistor 

level. We then use these cells to create approximation 

multi-bit adders. Apart from the intrinsic decrease in 

switching capacitance, our methods lead to noticeably 
shorter critical pathways, which facilitate voltage 

scaling. Using the suggested approximate arithmetic 

units, we create designs for image and video 

compression algorithms and test them to show how 

effective our method is. Additionally, we establish basic 

mathematical models for these approximation adders' 

inaccuracy and power consumption. Additionally, we 

show how useful these approximation adders are in two 

digital signal processing systems with particular quality 

constraints: the finite impulse response filter and the 

discrete cosine transform. Comparing the suggested 

approximation adders to current implementations that 
use correct adders, simulation findings show power 

savings of up to 69%.  

Support for diverse DSP and classification 

applications on energy-constrained devices has become 

more important. These applications frequently use fixed-

point arithmetic to execute matrix multiplications in 

large quantities while displaying tolerance for certain 

computational faults. Therefore, increasing 

multiplications' energy efficiency is essential. In this 

short, we provide multiplier topologies that allow for the 

trade-off between energy usage and computational 
accuracy throughout design. With an average 

computational error of about 1%, the suggested 

multiplier can use 58% less energy per operation than a 

precise multiplier. Lastly, we show that the accuracy of 

classification applications and the quality of DSP are not 

significantly affected by such a little computational 

mistake. 

 

PROPOSED METHODOLOGY 

BLOCK DIAGRAM 

 

 
Block diagram showing how the AMCAL unsigned 

multiplier circuit is implemented. 

 

The following is a summary of this paper's contributions:  

 By altering the traditional multiplication method, 

presenting a new multiplication scheme.  

 Restructuring the algorithm used to determine the 

leading bit's location to use less space and energy.  

 Examining the lookup table to reduce the output 

error by figuring out the manipulation instructions in 

certain bits.  

 Outlining three approximation multiplier hardware 

solutions for signed and unsigned operations that 
have adjustable accuracy levels (AMCAL). 

 Examining the suggested multiplier's design settings 

for face alignment, JPEG image compression, and 

picture processing. 

 

MODULE EXPLANATION: 

A. AMCAL Multiplier Arithmetic for Multiplication 

Certain current approximation multiplication algorithms 

work under the assumption that the input will never 

change; they either utilize an approximate adder, accept 

the approximate output and use it to approximate the 
building blocks of partial products, or they disregard 

some pieces of the input [4], [15]. Our suggested 

multiplication technique by small input variation makes 

it possible to reduce the number of input bits more 

effectively, which lowers the power, area, and latency of 

the multiplier. The fundamental idea of the suggested 

method is derived from (1): 

 
Where 𝐸1 and 𝐸2 represent the adjustments we made to 
the input values (which we will now refer to as input 

errors). To get a reasonable approximation, the terms 

𝐵𝐼1, 𝐴𝐸2, and 𝐸1𝐸2 must be eliminated. We used the 

following method to do this: 

1- The word E1E2 can be eliminated from (1) if we 

choose input errors E1 and E2 so that E1E2 

2. The phrase ±𝐵𝐸1±𝐴𝐸2 can be eliminated from (1) if 

we choose input errors E1 and E2 so that the terms ±BE1 

and ±AE2 cancel each other out. In order to do this, input 

errors E1 and E2 must be directed in opposite directions 
(positive and negative, or vice versa), and they must, 

respectively, represent a proportion of inputs A and B 

(Equation (2)).  

 
When we replace (2) with (1), we obtain: 

 
The words ±BEA∑AEB cancel each other out if the 

equivalence x1=x2=x is true. If x1,x2≥100, the term 

x1100x2100AB can be disregarded in relation to AB. 

Thus, (3) becomes (4). 
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An illustration of the AMCAL multiplication algorithm's 

steps for multiplying two integers is shown in FIG 2.  

 
To minimize the space and power consumption, it is 

erroneous to select 𝑥1 = 𝑥2 since two 𝑛-bit additions 

must be done in addition to a single 𝑛-bit multiplication. 

In order to address this problem, 𝑥1 𝑎𝑛𝑑 𝑥2 are chosen 

in a way that maximizes the satisfaction of the two 

aforementioned requirements while simultaneously 

improving the power consumption, area, and delay. 

In an n-bit number, the weight at each bit location drops 

exponentially from the most significant bits to the least 

significant bits. Consequently, we may take the input 
value that contains just m most significant bits from the 

original input and truncate the n-m least significant bits 

using one of the two methods listed below:  

1. Reduce the value of the input in comparison to its 

original input by eliminating the n–m least significant 

bits.  

2. The sum of the remaining portion (the m most 

significant bits) plus "1" is computed to raise the number 

in relation to its starting value in order to restore the 

inaccuracy brought on by deleting the n–m bits.  

 
Interestingly, truncating the least significant bits in the 

suggested approach is the same as adding an error to the 

input; this is comparable to the values of 𝑥1 and 𝑥2 in 

(2). Moreover, in order to meet the second criterion, one 

of the inputs needs to be larger than its original value and 

the other less than its initial value, meaning that E1 and 

E2 have the opposite signs.  

As more selected bits (m) are chosen, less error is 
introduced into the inputs, resulting in lower values for 

𝑥1 and 𝑥2. This lowers the values of the terms added in 

(3) and makes it simpler to disregard those terms.  

 
 

The implementation of the 32-bit LOD and Bit-selection 

module for a=00000000|000001xx|xxxxxxxx|xxxxxxxx 

when m=4 is shown in FIGURE 3. 

 

The suggested multiplication method is seen in Fig. 2. 
essentially converting the 16-bit inputs to 4-bit values by 

manipulating them when m=4. Additionally, input B is 

less than its starting value while input A increases in 

value. As a result, the algorithm's requirements are all 

met. 

 

B. Hardware Implementation of AMCAL Multiplier 

The suggested multiplier circuit uses the method shown 

below, which is schematically shown in Fig. 4:  

(1) The Leading-One Detector (LOD) Block receives the 

n-bit inputs. Subsequently, the segment determination 
block splits the n-bit input into four segments, each 

containing a bit equal to "1" (n/4) bits. Next, the priority 

encoder is used to create that segment's index.  

(2) To create a n/4+m+1 bits number, the relevant (n/4)-

bit component is combined with m+1 bits from the right-

hand segment. The leftmost bit that equals "1" in the 

chosen segment is then located by the position 

determination block. Next, the priority encoder is used to 

produce that position's index.  

(3) The (n/4+m+1)-bit inputs are sent to the Bit Selection 

block, which truncates the remaining bits and chooses 

the m+2 bits from the leftmost bit equal to "1" found in 
the previous stages (see to Fig. 3).  

(4) By combining the #Segment and #Position priority 

encoder outputs from each input, the values of ka and kb 

are obtained. The amount of shift in the output is then 

computed by summing these two figures.  

(5) An adder is entered with the m-bit integer to be added 

to "1".  

(6) The Multiplexer block decides whether the m-bit 

number should be approximated higher (by incrementing 
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it by "1") or stay constant by taking the two least 

significant bits from the m+2 bits. 

As seen in TABLE 1, the control bits for the Multiplexer 

are acquired by consulting a lookup table. The estimated 

input is then fed into a m×m multiplier after that.  
(7) Based on the carry bits of the modified inputs A'm 

and B'm, a multiplexer chooses one of its four inputs.  

These four options are:  

1 is the product of A'm and B'm,  

2 is the shift of the input A'm left by m bits,  

3 is the shift of the input B'm left by m bits, and  

4 is the number 22m.  

(8) A barrel shifter is used to show the produced product 

as a 2n-bit integer. 

 

 
Fig 5. The Bit-selection block and the LOD block 

components 

 

Since fewer AND and OR gates are required to perform 

the LOD and Bit-selection block in this scenario than in 

the case of splitting into 2, 8, or 16, four was the number 

four chosen to divide the inputs in step 1. We require the 

number of two-input OR gates given in (5) in order to 

construct the LOD and Bit-selection block in our 
suggested algorithm: 

 
We also need the two-input AND gates in order to get the 

number shown in (6). 

 
In these Equations, S indicates the number of segments. 

Also, OR gates and AND gates with k inputs have been 

replaced with k-1 two-input gates. By searching for all 
the available values for the variables s, n, and m, it can 

be concluded that the lowest number of gates when n 

equals 8 or 16 occurs at s=4. Also, when n equals 32, the 

lowest number of gates occurs at s=8. Although using 

s=8 would use the lowest number of gates when 

operating in 32-bit mode, using s=4 would use almost 

the same number of gates. As a result, we always divide 
the input into 4 parts, s=4, for integrity and independence 

from the number of input bits. Note that the value of m 

has no bearing on the value of s for the lowest number of 

gates.  

 

C. Accuracy of AMCAL Multiplier 

1) Parameters for measuring circuit performance:  

The accuracy of diverse circuits is now faced with a new 

issue as a result of the excessive decrease of circuit 

complexity and delay. The many standards for assessing 

approximate circuit performance are covered in this 

section.  
 

a) The mean error distance and error distance  

The error distance (ED) is defined as the difference 

between the precise product M and the approximate 

product 𝑀′, where 𝐸𝐷=|𝑀′−𝑀|. The mean error distance 

(MED) is the average of all ED values for all inputs. The 

normalized mean error distance (NMED), where Mmax 

is the maximum product value of an exact multiplier, 

e.g., (2𝑛−1)2 for an n×n multiplier, must be used to 

compare multipliers of different sizes. 
 

b) Meaning of relative error and relative error 

The relative error, represented by 𝑅𝐸𝐷 = |𝑀′−𝑀|/𝑀 = 

𝐸𝐷/𝑀, may be utilized to more accurately compare 

different circuits. Averaging all of the REDs for various 

input combinations yields the mean relative error 

(MRED) for an n×n multiplier. 

 
Hence, given the inputs i = A and j = B, 𝑀𝑖𝑗′ and 𝑀𝑖𝑗 are 

the approximation and precise multiplications, 

respectively. Interestingly, when one of the inputs is 0, 

MRED is defined as zero. 

 

c) Both The Pass And Mistake Rates 
The ratio of accurate outputs to total outputs is known as 

the pass rate (PR), whereas the ratio of wrong outputs to 

total outputs is known as the error rate (ER). 

The suggested model will also be assessed using mean 

squared error (MSE) and maximum error (Max ER), in 

addition to MRED, MED, NMED, and PR. Error will 

also be assessed using variance, error rate, and the 

Hamming distance (ACCinf) [23]. 

Lastly, the cost function is created in accordance with 

(10) to evaluate all parts of the algorithm simultaneously 

as the number of distinct chosen bits m increases, much 
like in [4]. It is preferable that the cost function have a 

smaller value. 
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𝐶𝐹=𝑀𝑅𝐸𝐷 ×𝐸𝑛𝑒𝑟𝑔𝑦 ×𝐷𝑒𝑙𝑎𝑦 ×𝐴𝑟𝑒𝑎 

 

2) Parameters for measuring circuit performance: 

As shown in (11), the maximum error is computed. 

 
To get the greatest error, the terms (𝐴𝑇/𝐴−1) and 

(𝐵𝑇/𝐵−1) must be maximized. The bits to be truncated, 

the two least significant bits of the m+2 chosen bits, and 

the m most significant bits of the input that have their 

leftmost bit always equaling "1" must thus be separated 

into three sections. According to this classification, rows 

1, 2, 3, and 4 of Table 2 display, respectively, the forms 

of inputs A and B that cause the maximum error, the 
number of times the maximum error occurs, the value of 

the maximum error, and the mean relative error when the 

inputs are 32-bit and the number of input bits selected is 

m=4. 

 

D. Applications of Image Processing  

When multiplier sizes change, error evaluation through 

simulation and programming becomes much more time-

consuming. In error-resilient applications, the quality of 

the approximation multiplier may be evaluated using 

image processing techniques as picture smoothing and 
sharpening.  

As seen in (12), the highest signal-to-noise ratio serves 

as another criterion for assessing the quality of the 

reconstructed image in comparison to the original image. 

 
where the numbers α (i,j) and β(i,j) stand for the number 

of pixels in the original picture and the number of pixels 
in the reconstructed image at location (i, j) with 

dimensions m×n.  

The picture smoothing procedure may be applied using 

equation (13), as described in [21], where i and j stand 

for the considered pixel.  

 
Definition of the smoothing mask matrix used in [24] 

 
An actual model of this 8-bit multiplier is created in 

MATLAB and used to smooth images in order to assess 

the suggested approach. It should be noted that the 

current simulation analyzes the effects of approximation 
multiplication by performing all other operations—such 

as addition and subtraction—exactly. Additionally, the 

MATLAB simulations of the DSM, DRUM, TOSAM, 

and DSI models are used in conjunction with the 

smoothing technique to quantify the quality of the picture 

output using the parameters provided in [25] for the 
peak-signal-to-noise ratio (PSNR) and mean structural 

similarity index metric (MSSIM). Lastly, TABLE 11 

presents the findings. 

In addition to TOSAM(1,5) and DSI2, which have the 

same error class as AMCAL3, it is compared to the 

DRUM4 and DSM5 models, which have four and five 

input bits, respectively, to highlight the benefit of 

AMCAL having just three input bits for the 

multiplication operation.  

Image sharpening methods are another criteria for image 

processing testing, and (15), as described in [21], can be 

applied in this situation.  

 
(16) defines the sharpening mask matrix [24]. 

 
Lastly, the MATLAB model is subjected to the picture 

sharpening procedure in order to assess the quality 

arising from the different operating classes of AMCAL. 

From m=1 to m=8, eight operational classes are used to 
analyze the impacts. Figure 11 displays the final photos. 

As can be observed in the picture, the sharpening 

algorithm does a good job at sharpening the edges of the 

image in comparison to the original, and the decline in 

image quality drops significantly as AMCAL4 and 

higher.  

In a different application, we used signed 16-bit 

approximation multipliers in the discrete cosine 

transform (DCT) unit and the JPEG method to compress 

several pictures. Processing DCT calls for a lot of 

addition and multiplication. The DCT precise 

multiplication is replaced by the approximate 
multipliers. To illustrate the benefit of S-AMCAL while 

performing the multiplication operation with just four 

input bits, we use the DRUM5 model, which has five 

input bits. Furthermore, because S-ROBA and 

TOSAM(2,6) belong to the same error class as S-

AMCAL4, they are chosen for comparison.  

Comparing the compressed pictures to the original input 

images, we were able to recover the PSNR and MSSIM, 

The outcomes demonstrate that AMCAL4 performs 

better in PSNR and MSSIM than its rivals. 
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Fig 1: Utilization Summary Report 

 

 
Fig 2: RTL Schematic (Gate-Level) 

 

 
Fig 3: RTL Schematic (Gate-Level) 

 

 

 
Fig 4. TTL Schematic 

 

 
Fig 5: Timing Summary 

 

 
Fig 6: Simulation Results 
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CONCLUSION 

In the current work, an approximation 

multiplier known as AMCAL was presented. It is 

significantly more accurate than multipliers in the same 

class and requires less power and space. This multiplier 
operates on the premise of altering the input bits by 

lowering their number before to entering the main 

multiplier while preserving the range of error tolerance. 

You may use this multiplier for both signed and unsigned 

multiplication. We looked into eight different ways to 

apply this multiplier. By contrasting it with a number of 

precise and approximative multipliers that were created 

with varying design parameters, the suggested 

multiplier's effectiveness was assessed. 

The results show that in all design parameters, the 

AMCAL architecture outperforms the Wallace exact 

multiplier, and in the majority of design parameters, it 
outperforms the DSM and DRUM approximation 

multipliers. The suggested multiplier has a larger delay 

parameter than the adjustable approximation multipliers 

TOSAM and DSI, but it performs better in terms of 

power and area parameters. Finally, four image 

processing programs—image sharpening, image 

smoothing, JPEG image compression, and face 

alignment—were used to test the suggested multiplier. 
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