
International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 10, OCT, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 426

ENHANCING FAST DECODING OF SINGLE ERROR CORRECTION

CODES FOR ESSECTIAL BIT GROUPS
1Syed Karimoon,

2Mr. C. Bhargav
1M.Tech Student,2Assistant Professor

Department of Electronics and Communication Engineering

St. Johns College Of Engineering & Technology,Yerrakota, Yemmiganur, Kurnool

ABSTRACT

Single error correction (SEC) codes

are widely used to protect data stored in

memories and registers. In some applications,

such as networking, a few control bits are

added to the data to facilitate their processing.

For example, flags to mark the start or the

end of a packet are widely used. Therefore, it

is important to have SEC codes that protect

both the data and the associated control bits.

It is attractive for these codes to provide fast

decoding of the control bits, as these are used

to determine the processing of the data and

are commonly on the critical timing path. In

this brief, a method to extend SEC codes to

support a few additional control bits is

presented.

The derived codes support fast

decoding of the additional control bits and are

therefore suitable for networking

applications. Environmental interference and

physical defects in the communication

medium can cause random bit errors during

data transmission. Error coding is a method

of detecting and correcting these errors to

ensure information is transferred intact from

its source to its destination. Error coding is

used for fault tolerant computing in computer

memory, magnetic and optical data storage

media, satellite and deep space

communications, network communications,

cellular telephone networks, and almost any

other form of digital data communication.

Error coding uses mathematical formulas to

encode data bits at the source into longer bit

words for transmission.

The "code word" can then be

decoded at the destination to retrieve the

information. Different error coding schemes

are chosen depending on the types of errors

expected, the communication medium's

expected error rate, and whether or not data

retransmission is possible. Faster processors

and better communications technology make

more complex coding schemes, with better

error detecting and correcting capabilities,

possible for smaller embedded systems,

allowing for more robust communications.

I. INTRODUCTION

Complex integrated circuits are necessary for

networking applications because they need to

handle data quickly [1]. Packets usually enter

routers and switches by a single port, undergo

processing, and then be routed to one or more

output ports. Data are saved and sent across

the device during this operation [2].

For networking devices like core routers,

reliability is a crucial necessity [3].

Therefore, in order to identify and fix

mistakes, the stored data needs to be

safeguarded. Error-correcting codes (ECCs)

are frequently used for this [4]. Single error

correction (SEC) algorithms that can fix 1-bit

mistakes are frequently utilised for registers

and memory [5, 6].

One issue with data protection in networking

applications is that each data block has a few

control bits added to it to make processing

easier. Flags are often used, for instance, to

indicate an error (ERR), the start of a packet

(SOP), or the end of a packet (EOP) [7]. The

accompanying control logic is frequently on

the crucial time route, and these flags are

utilised to decide how the data is processed.

If the control bits are secured by an ECC,

they must be decoded before they may be

accessed. The overall frequency may be

limited by this decoding, which also adds

latency. One choice is to use distinct ECCs to

safeguard the data and control bits as distinct

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 10, OCT, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 427

data blocks. Let's use 128-bit data blocks

with three control bits as an example. Next,

an SEC code can use eight parity check bits

to secure a data block, and another SEC code

can use three parity check bits to protect the

three control bits. Although this method

minimises the latency by allowing data and

control bits to be decoded independently, it

necessitates additional parity check bits.

Using a single ECC to safeguard the control

and data bits is an additional choice.

Compared to using independent ECCs,

protecting 128 + 3 bits only requires 8 parity

check bits, saving 3 bits. But in this instance,

the control bit decoding is more difficult and

takes longer.

Fig. 1. Typical packet data storage in a

networking application

This brief suggests a way to add a few more

control bits to an SEC code such that they are

likewise protected. A portion of the parity

check bits in the resultant codes can be used

to decode the control bits. As a result, they

are appropriate for networking applications

and have a lower decoding time. A number of

codes have been developed and put into use

in order to assess the approach. They are then

contrasted with current solutions in terms of

area and decoding latency.

II. DATA PROTECTION IN

NETWORKING APPLICATIONS

Data speeds ranging from 10 to 400 Gbit/s are

supported by current networking technology,

and terabit rates are anticipated soon [8].

Current ASICs generally employ clock rates

between 300 MHz and 1 GHz, while FPGAs

often use lower clock frequencies (less than

400 MHz). On-chip packet data buses are

broad, often ranging from 64 to 2048 bits in

width, to accommodate these high data speeds

[9], [10].

Fig. 2. Parity check matrix for a minimum-

weight SEC code that protects 128 data bits.

Fig. 3. Parity check matrix for a minimum-

weight SEC code that protects 128 data and 3

control bits.

Fig. 4. Decoding of a control bit for single and

independent SEC codes for data and control.

(a) SEC code for both data and control bits. (b)

Independent SEC codes for data and control

bits.

In order to adjust processing speeds, packet

data must often be kept in RAMs, for example,

in FIFOs. Delineating the packet boundaries is

essential for storing packet data. In the most

basic scenario, a single EOP marker can be

used to identify each bus section. The

subsequent packet is thus presumed to begin

with the next valid section. In reality,

designers also indicate the beginning of

packets explicitly using a SOP marker. In

packet processing, there are also several

instances where a packet contains errors and

needs to be discarded. An extra control signal

(ERR) could be needed to identify such

errored packets [7].

As stated in the introduction, storing the data

and the markers in a single broad memory, as

illustrated in Fig. 1, is appealing from the

standpoint of error prevention. Consequently,

comparatively fewer ECC bits are needed.

When the data is read out, this method has an

issue. Usually, a state machine that regulates

the reading of the ensuing data receives the

markers as input. For instance, the state

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 10, OCT, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 428

machine could have to read out a certain

number of bytes of data (such as in a deficit

round robin scheduler) or just one packet (up

to an EOP). As indicated in red, the ECC

correction logic and the state machine logic

make up the important time route. In a

conventional Hamming SEC code, the number

of logic layers needed to decode the syndrome

and carry out correction rises in tandem with

the width of the data bus. Critical time on the

signal channels associated with the adjustment

of the markers that feed downstream state

machines is a common observation made by

circuit designers. The ability of unique ECC

codes to quickly decode the limited amount of

marker bits makes them very appealing.

In some situations, the system can handle the

packet data with a block size granularity. For

instance, when the data is only being moved

from one place to another, this would be the

situation. On the other hand, knowing the

packet data size with a byte precision is crucial

in other situations. This would be the situation

when checks are made for maximum transfer

unit length or when bit rate is crucial (for

scheduling and policing). It could be necessary

to retain extra marker bits called EOPSIZE,

which indicate how many of the bytes in the

EOP transfer are legitimate, because the basic

SOP and EOP markers are insufficient to

determine the precise packet size. Keep in

mind that any transfers made before the EOP

are always deemed to be complete. Therefore,

an extra 4 EOPSIZE bits could be needed on a

128-bit data bus, increasing the total number

of marker bits to 7 (SOP, EOP, ERR, and

EOPSIZE[3:0]).

Fig. 5. Proposed parity check matrix for a SEC

code that protects 128 data and 3 control bits.

III. PROPOSED METHOD TO

DESIGN THE CODES

The objective is to create SEC codes that can

safeguard a data block together with a few

control bits while allowing for low-latency

decoding of the control bits, as was covered in

the introduction. As previously stated, the size

of the data blocks that need to be safeguarded

is often a power of two, such as 64 or 128 bits.

Seven parity check bits are required to secure a

64-bit data block with an SEC code, but eight

are sufficient to secure 128 bits. Since there

are 27 = 128 potential syndromes in the first

scenario, a few more control bits can be

covered by the SEC code. This also applies to

128 bits and, more generally, to an SEC code

that safeguards a power-of-two data block.

This implies that no extra parity check bits are

needed to safeguard the control bits. This is

more effective than employing two distinct

SEC codes, one for the control bits and one for

the data bits, which necessitates extra parity

check bits. The primary issue with using an

expanded SEC code is the complexity of the

control bit decoding. Let's look at a 128-bit

data block with three control bits to

demonstrate this problem. The parity check

matrix for the 128-bit data block's first SEC

code is displayed in Fig. 2. To reduce

encoding and decoding latency, this algorithm

has a parity check matrix with balanced row

weights and a minimal total weight [4]. To get

a code that secures the extra control bits, it is

simple to add three more data columns. For

instance, the matrix shown in Figure 3, which

has three extra columns (designated as control

bits) added to the left, can be utilised.

The issue is that in order to decode the three

control bits, we must first compute the eight

parity check bits and then compare the output

to the control bits' columns. Compared to

decoding an individual SEC code for the three

control bits, this is far more complicated.

Figure 4 illustrates the decoding of a bit in

each scenario, demonstrating the variation in

complexity.

As previously said, our objective is to use a

single SEC code for both data and control bits

while making the decoding of the control bits

simpler. The first step in doing so is to

acknowledge that SEC decoding can

occasionally be streamlined to merely examine

a subset of the syndrome bits. The decoding of

constant-weight SEC codes, as suggested in

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 10, OCT, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 429

[11], is one instance. Only the syndrome in

this instance

Fig. 6. Bit decoding of a control bit in the

proposed SEC code.

TABLE I

MINIMUM NUMBER OF Pcd BITS FOR

128 AND 256 DATA BITS

It is necessary to check the bits that have a 1 in

the parity check matrix's column. This makes

decoding all bits easier, but it usually

necessitates extra parity check bits. Since the

control bits are frequently on the crucial route,

the primary goal in our situation is to make

decoding them easier. This may be

accomplished by splitting the parity check bits

into two groups: one that is utilised

exclusively for the data bits and the other that

is shared by the control and data bits. The first

set of parity check bits simply has to be

recalculated in order to decode the control bits.

An example is a better way to explain this

method. Let's look at a 128-bit data block with

three control bits that are shielded by eight

parity check bits. These eight bits are

separated into two groups: one of five is used

exclusively for the data bits, while the other

group of three is shared by the control and data

bits. The first three parity check bits can be

given distinct values for each control bit in

order to secure the control bits; the remaining

parity check bits are not utilised in this way.

Different values of the remaining five parity

check bits can be used for each value, and the

remaining values are utilised to secure the data

bits. Three of the eight possible values in the

first set of bits in this example are utilised for

the columns that match the control bits. There

are five values left that can be utilised to

safeguard the data bits. Each of the five values

on the first set of parity check bits can be

coded with one of the five bits in the second

group. Thus, the maximum number of data bits

that may be safeguarded is 5 × 32 = 160. Since

the appropriate column would have a weight

of zero or one, the zero value on the first group

cannot be joined with another zero or a single

one on the second group, so the number is

really lower. In any event, protecting 128 data

bits is simple.

Fig. 7. Proposed parity check matrix for a SEC

code that protects 128 data and 7 control bits.

Figure 5 illustrates the parity check matrix of

an SEC code that was obtained using this

technique. The additional control bits are

represented by the first three columns. The

latter five rows exclusively safeguard the data

bits, whereas the first three rows share the data

and control bits. The two sets of parity check

bits are likewise divided. It is evident that the

first three parity check bits only need to be

recalculated in order to decode the control bits.

Additionally, certain data bits also use the zero

value on these three bits. This indicates that

the first three parity check bits may be

recalculated without those bits.

Fig. 6 shows the decoding of one of the control

bits. As can be seen from the left portion of

Fig. 4, the circuitry is much simpler than that

of a conventional SEC code. The experimental

findings in the next section will support this.

More than three control bits can be protected

using this technique. Let's assume for the

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 10, OCT, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 430

moment that we need to use p parity check bits

to secure d data bits and c control bits. P is

then separated into two categories, pcd and pd.

Control and data bits share the first group, but

only the data bits utilise the second. The

following formula can be used to determine

how many data bits this technique can protect.

There are 2P cd − c combinations of the first

group that can be utilised to secure the data

bits. A total of (2P cd − c) · 2P d can be

obtained by using up to 2P d values for each of

those. However, pd + 1 should be deducted

since the combinations of the second group

with weight zero or one cannot be utilised for

the zero value. Likewise, the zero value on the

second group cannot be utilised for the pcd

values with weight one on the first group since

the resulting column would have weight one.

As a result, pcd must also be deducted,

resulting in (2P cd − c) · 2P d − (pd + 1) − pcd.

This is how many data bits, on top of the

control bits, can be secured. To be able to

secure the block of data bits with the same

number of parity check bits, the PCD must be

increased in tandem with the number of

control bits. Table I provides examples for 128

and 256 data bits. The minimal value should

be utilised since increasing pcd complicates

control bit decoding.

TABLE II

ASIC CIRCUIT AREA (μM2) FOR 3

ADDITIONAL CONTROL BITS

TABLE III

ASIC CIRCUIT DELAY (NS) FOR 3

ADDITIONAL CONTROL BITS

Fig. 7 illustrates the parity check matrix used

to safeguard 128 data and 7 control bits. It is

evident that in this instance, the first group

requires more bits, which makes the control bit

decoding a little more difficult. Instead of the

eight bits needed for a conventional SEC code,

the control bits can still be deciphered using

just four syndrome bits. Lastly, it should be

mentioned that in the event of multiple

mistakes, the suggested technique raises the

risk of miscorrection for control bits. This is

because just a portion of the bits are used to

decode the control bits.

IV. EVALUATION

The suggested system has been developed for

64, 128 and 256 data bits while taking into

account three and seven more control bits in

order to evaluate its merits. The codes shown

in Figures 5 and 7 are the same as those used

for the case of 128 data bits. The

minimumweight SEC codes with balanced row

weight (shown in Fig. 3 for the case of 128

data bits and 3 control bits) are compared to

the encoders and decoders. The smallest

decoding latency for a conventional SEC code

ought to be offered by these codes.

All of the designs have been built in HDL and

mapped to a 45-nm ASIC library using

Synopsis DC in order to assess the suggested

codes for an ASIC implementation [12]. As

the primary design objective for the decoders,

the synthesis was set up to focus most of its

efforts on minimising latency on the control

bits. The tool was set up to minimise delay on

all bits for the encoders. The suggested codes

and the minimum-weight codes were subjected

to the same synthesis limitations in every

instance. Both the delay and the circuit area

have been assessed.

TABLE IV ASIC CIRCUIT AREA (μM2)

FOR 7 ADDITIONAL CONTROL BITS

TABLE V ASIC CIRCUIT DELAY (NS)

FOR 7 ADDITIONAL CONTROL BITS

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 10, OCT, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 431

Tables II and III provide the outcomes for the

scenario with three more control bits. The

findings for the minimum-weight SEC codes

are likewise included in the tables. In this

instance, there is a 12%–18% decrease in the

control bits' decoding latency. This

demonstrates how the suggested plan could

shorten the critical path. Sometimes somewhat

lower, sometimes slightly higher, the circuit

area is comparable to the minimum-weight

SEC codes.

The decoding latency for the data bits is

affected by the suggested codes. For the

majority of word sizes, the additional delay on

data bits is substantial for the decoders.

However, as the control bits usually dictate the

crucial time route, the main design objective is

to decrease the decoding delay of the control

bits, as was covered in the introduction.

Tables IV and V provide the outcomes for the

scenario with seven control bits. The circuit

space needed for the encoder and decoder in

the suggested codes is comparable to that of

the minimum-weight codes. The data bits

decode more slowly in terms of delay.

However, the control bits' decoding latency

can be decreased by around 9% to 11% using

the suggested codes. Compared to the situation

with three control bits, this decrease is less.

This is to be expected when the decoder

complexity rises along with the amount of

parity bits (pcd) utilised to decode the control

bit (from three to four). As a result, as the

number of control bits rises, the advantages of

the suggested method diminish.

In conclusion, the suggested technique may be

applied to decrease the control bits' decoding

time, particularly when there aren't many

control bits.

V. CONCLUSION AND FUTURE

WORK

A technique for creating SEC codes that can

safeguard a data block and a few extra control

bits has been provided in this short. The

derived codes are created to allow the control

bits to be decoded quickly. The derived codes

don't need more memory or registers since

they contain the same amount of parity check

bits as the current SEC codes. A number of

codes have been put into place and contrasted

with minimum-weight SEC codes in order to

assess the advantages of the suggested plan.

Applications where a few control bits are

introduced to each data block and the control

bits must be decoded quickly can benefit from

the suggested codes. On certain networking

circuits, this is the case. In other situations,

such as in some finite-state machines, where

the critical delay impacts certain bits, the

approach may also be helpful. Arithmetic

circuits are another example, where the least

important bits often have the critical route.

Consequently, the overall circuit speed may be

raised by decreasing the delay on those bits.

An intriguing area for further research is the

applicability of the suggested technique to

those applications outside of networking. More

sophisticated ECCs that can fix multiple bit

faults could be able to use the concept of

changing the code matrix to allow for quick

decoding of a few bits. Lastly, by adding one

or two more parity check bits, the system may

be expanded to include more control bits. This

would offer a way to do quick decoding

without utilising two different codes for the

control and data bits.

REFERENCES

1. P. Bosshart et al., “Forwarding

metamorphosis: Fast programmable

match-action processing in hardware

for SDN,” in Proc. SIGCOMM, 2013,

pp. 99–110.

2. J. W. Lockwood et al., “NetFPGA—

An open platform for gigabit-rate

network switching and routing,” in

Proc. IEEE Int. Conf. Microelectron.

Syst. Educ., Jun. 2007, pp. 160–161.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 10, OCT, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 432

3. A. L. Silburt, A. Evans, I. Perryman,

S.-J. Wen, and D. Alexandrescu,

“Design for soft error resiliency in

Internet core routers,” IEEE Trans.

Nucl. Sci., vol. 56, no. 6, pp. 3551–

3555, Dec. 2009.

4. E. Fujiwara, Code Design for

Dependable Systems: Theory and

Practical Application. Hoboken, NJ,

USA: Wiley, 2006.

5. C. L. Chen and M. Y. Hsiao, “Error-

correcting codes for semiconductor

memory applications: A state-of-the-

art review,” IBM J. Res. Develop.,

vol. 28, no. 2, pp. 124–134, Mar.

1984.

6. V. Gherman, S. Evain, N. Seymour,

and Y. Bonhomme, “Generalized

parity-check matrices for SEC-DED

codes with fixed parity,” in Proc.

IEEE On-Line Test. Symp., 2011, pp.

198–20.

7. Ten Gigabit Ethernet Medium Access

Controller, OpenCores. [Online].

Available:

http://opencores.org/project/ethmac

8. P. Zabinski, B. Gilbert, and E. Daniel,

“Coming challenges with terabitper-

second data communication,” IEEE

Circuits Syst. Mag., vol. 13, no. 3, pp.

10–20, 3rd Quart. 2013.

9. UltraScale Architecture Integrated

Block for 100 G Ethernet v.14.

LigCOREIP Product Guide. PG165,

Xilinx, San Jose, CA, USA. Jan. 22,

2015.

10. OpenSilicon Interlaken ASIC IP Core.

[Online]. Available:

www.opensilicon.com/open-silicon-

ips/interlaken-controller-ip/

11. P. Reviriego, S. Pontarelli, J. A.

Maestro, and M. Ottavi, “A method to

construct low delay single error

correction (SEC) codes for protecting

data bits only,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst.,

vol. 32, no. 3, pp. 479–483, Mar.

2013.

12. J. E. Stine et al. “FreePDK: An open-

source variation-aware design kit,” in

Proc. IEEE Int. Conf. Microelectron.

Syst. Educ., Jun. 2007, pp. 173–174.

http://www.ijesat.com/
http://opencores.org/project/ethmac
http://www.opensilicon.com/open-silicon-ips/interlaken-controller-ip/
http://www.opensilicon.com/open-silicon-ips/interlaken-controller-ip/

	ENHANCING FAST DECODING OF SINGLE ERROR CORRECTION CODES FOR ESSECTIAL BIT GROUPS
	1Syed Karimoon,2Mr. C. Bhargav
	1M.Tech Student,2Assistant Professor
	St. Johns College Of Engineering & Technology,Yerrakota, Yemmiganur, Kurnool
	ABSTRACT

