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ABSTRACT   
There is no distinction made between accurate and inexact floating-point numbers in the IEEE 754 

standard. The binary encoding lacks a bit or field that determines whether a floating-point integer is precise. For 

both binary and decimal floats, this is true. A floating-point status register's inexact flag is raised by an inexact 

operation. The result is rounded to make it appear correct when utilized in a subsequent procedure. Because the 

floating-point arithmetic unit evaluates every input operand as if it were accurate, the computed results may 

contain significant mistakes. This essay explains arithmetic operations on both kinds of numbers and concentrates 

on differentiating between precise and inexact decimal values. The user may be certain that every decimal place 

in the computed result is accurate if the outcome of a series of operations is precise. On the other hand, a loss of 

significant digits happens if certain input operands are not correct or if the output cannot be calculated exactly. 

For the approximate calculated value, a separate representation is employed. The imprecise calculated result 

includes an estimate of the absolute inaccuracy as well. The arithmetic operations and decimal numbers presented 
in this work yield results that are more accurate than those calculated using the IEEE 754 standard. In the latter 

portion of this work, a basic assessment is presented. 

 

INTRODUCTION 

The original 1985 binary standard [2] was expanded by 

the IEEE 754-2008 standard [1] for floating-point 

arithmetic, which added decimal (radix-10) floating-

point integers. Because they prevent the rounding 

mistakes that usually happen when translating a 

decimal fraction in data entered by humans into a 

binary fraction, decimal numbers are required. As an 

illustration, the decimal fraction 0.7 becomes 
0.699999988 in a 32-bit binary representation. The 

binary fraction has to be precisely rounded. When there 

is an error in a calculated result, decimal values are also 

rounded. The Radix-10 rounding rules, however, are 

more focused on people. Financial computations, 

business databases, banking, taxation, and currency 

conversions all often involve decimal numbers [3]. 

Although binary numbers may also be helpful in 

scientific and technical applications, their widespread 

hardware support makes them widely employed. The 

difference between accurate and imprecise decimal 
floating-point values is discussed in this work. The 

infinite continuum of real numbers has one discrete 

value that corresponds to an exact number. Zero errors 

can be made in its representation. There is no rounding. 

Decimal floating-point numbers can only accurately 

represent a finite subset of real numbers due to the 

restricted precision p of the significand.  

Conversely, a decimal number that is not accurate 

cannot be expressed precisely to a finite degree of 

accuracy. Since some real values, like π, cannot be 

represented accurately, they must be rounded to the 

floating-point representation's level of accuracy. 
Even in cases when the operands are accurate, an 

inexact decimal number may arise from an inexact 

operation that necessitates rounding. Every imprecise 

floating-point operation and outcome has a 

corresponding mistake. An imprecise decimal number 

corresponds to a range of actual numbers because of 

the representation's poor accuracy. An inexact decimal 

number and an infinite set of real numbers are defined 

as a one-to-infinite relation.  

A decimal number is represented numerically as ⁌C × 

10q, where q is a signed exponent and C is an integer 

coefficient made up of p decimal digits. The number is 

subnormal if C's first digit is zero. It becomes 
normalized otherwise. The same decimal value may 

have more than one representation, and the IEEE 754 

standard does not mandate that decimal values be 

normalized. Regretfully, the same decimal 

representation may be rounded or accurate. The bit or 

field that indicates whether a decimal number is 

rounded does not exist. Whether implemented in 

software or hardware, floating-point operations 

consider all operands as if they were accurate, which 

might lead to significant inaccuracies in the computed 

output.  
Take the addition of four decimal32 integers, for 

instance, in the following particular order: ((W + X) + 

Y ) + Z). A signed exponent, an integer coefficient with 

a maximum of 7 decimal digits—the precision of 

decimal32—and a sign bit are used to represent each 

decimal input. The following inputs are all accurate and 

were selected to increase the error: Z = −1001 × 10−4, 

Y = −2,124,578 × 10−1, X = 8,900,123 × 10−2, and W 

= 1,234,567 × 10−1.  

(W + X) is first calculated. The coefficient of X with 

the lower exponent needs to be moved to the right 

because of the difference in exponents: X = 8,900,123 
× 10−2 = 890,012.3×10−1. Next, the coefficients are 

rounded to the nearest whole number (W + X) = 

2,124,579 × 10−1. While the relative error is minor, the 

result is not exact: (0.3/2,124,579.3) ≈ 1.412 × 10−7. 
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Then, (W + X) + Y = 2,124,579 × 10−1 + −2,124,578 

× 10−1 = 1 × 10−1. The first input operand and the total 

are not accurate, but the operation is. [4] refers to this 

subtraction as catastrophic as it has obliterated six 

meaningful digits. The current relative error is at 0.3 × 
10−1/1.3 × 10−1, or 23%. It should be mentioned that 

even with digit cancellation, the output would have 

been accurate and error-free if both input operands had 

been exact. On the other hand, the IEEE 754 standard 

offers no information on the accuracy of the input 

operands.  

At last, Z = 1 × 10−1 + −1001 × 10−4 ((W + X) + Y ) 

+ Z. IEEE 754 states that min(EA, EB) is the favored 

exponent for decimal addition. When adding a decimal 

with a bigger exponent to a decimal with a smaller 

exponent, the coefficient of the larger decimal number 

has to be left-shifted if it contains leading zeros. 
Consequently, 1 × 10−1 turns into 1000 × 10−4 and 

1000 × 10−4 + −1001 × 10−4 = −1 × 10−4. The actual 

outcome is, however, 1300 × 10−4 + −1001 × 10−4 = 

299 × 10−4. Because the negative sign was computed 

incorrectly, the overall relative error has exceeded 

100%. Once more, the operation is precise, but the 

operand used as the initial input and the outcome are 

not. But an exact operation and an exact outcome are 

not distinguished in the IEEE 754 standard. In 

conclusion, a single imprecise operation usually has a 

minor relative error. However, the relative error might 
increase significantly during a series of procedures. 

The example above demonstrates the necessity of 

differentiating between accurate and imprecise decimal 

values. Even when following procedures are perfect, an 

imprecise number transmitted in the computation 

might lead to a significant total inaccuracy. Doing 

arithmetic on non-integer decimal numbers requires a 

different approach. 

 

A. INEXACT DECIMAL NUMBERS 

This study suggests a novel way to encode and compute 

inexact floating-point arithmetic for decimal floating-
point integers. Figure 1 illustrates how two inexact 

decimal numbers, C.L × 10q and C.H × 10q, are 

defined in between two successive exact decimal 

numbers, C × 10q and (C + 1) × 10q, with the same 

exponent q. In the range [0, 0.5], the L is a low fraction 

and the H is a high fraction [0.5, 1). Inaccurate 

arithmetic calculations yield an approximation of the L 

and H values, which are unknown.  

Think about adding the same four digits from the 

previous decimal place. In order to get (W + X), first 

multiply 1,234,567 × 10−1 by 8 and then add 900, 123 
× 10−2 to get 1,234,567 × 10−1 plus 890,012.3 × 10−1 

≈ 2,124,579.L × 10−1. It is not exact what (W + X) 

yields. A low fraction is indicated by the.L notation, 

where 0.L < 0.5. The outcome is not squared. Rather, 

the inexact result representation now includes the.L 

notation. (W + X) + Y = 2,124,579 follows.1.L × 10−1 

= L×10−1+−2,124,578× 10−1 = 1. The operation is 

accurate, but the outcome is not.  

Ultimately, 1.L × 10−1 + −1001 × 10−4 = ((W + X) + 

Y ) + Z. Since 1.L × 10−1 is not accurate, it cannot be 

left shifted. It is not equivalent to 1000 that L × 10−1.L 

× 10−4. Z must thus be moved to the right: Z = -1.001 

× 10−1. Thus, 1.L × 10−1 + −1.001 × 10−1 ≈ 0.L × 
10−1 ((W + X) + Y ) + Z.  This outcome is compatible 

with the correct total of 0.299 × 10−1, however it is an 

absolute mistake with zero significant digits. It informs 

the programmer that there is a better way to perform 

the computation. On the other hand, the IEEE 754 

result (−1 × 10−4) is not trustworthy. To boost 

instruction-level parallelism, computing (W + X) + (Y 

+ Z) in a different sequence yields a different result. 

IEEE 754 states that, after rounding, (Y + Z) = 

−2,124,578 × 10−1 + −1001 × 10−4 ≈ −2,124,579 × 

10−1. With a relative error of 100%, the result R is 

2,124,579 × 10−1 + −2,124,579 × 10−1 = 0. It gets 
more difficult to debug.  

 
 

Define two imprecise decimals in between each pair of 

consecutive accurate ones in Figure 1.  

By using the imprecise depiction proposed in Figure 1, 

(Y + Z) ≈ −2,124,579.Since L × 10−1 is not accurate, 

the total equals 2,124,579.L = 10^-1 + -2.1245779.L 

10^-1 ≈ 0.L 10^-1. This result is congruent with the 
genuine result and is similar to the one calculated using 

serial addition. This correction fixes floating-point 

arithmetic in decimals. It should be mentioned that 

decimal32 is defined as non-basic in IEEE 754. It 

serves as a point of reference in the example. Any size 

and precision of floating-point values can have 

computational mistakes. 

 

LITERATURE SURVEY 

Computer algebra in decimal floating-point format.  

Human-centric applications need to employ decimal 

floating-point arithmetic in order to obtain the same 
results as decimal arithmetic, which is the standard in 

human computations. Early measurements show that 

because software decimal arithmetic has a 100× to 

1000× performance penalty over hardware, some 

programs appear to spend 50% to 90% of their time 

processing decimals. Decimal floating-point is 

desperately needed in hardware. However, current 

designs either don't meet current requirements or don't 

work with the accepted principles of decimal 

arithmetic. This study presents a novel method for 

decimal floating-point that satisfies the limitations and 
specifications of the IEEE 854 standard while still 

producing the rigorous outcomes required for 

commercial applications. This arithmetic is being 

implemented in hardware, and it is anticipated that this 

will greatly speed many different applications.  

 

What is important to know about floating point 

arithmetic for computer scientists  
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Many people view floating-point math as an arcane 

subject. Given how commonplace floating-point is in 

computer systems, this is somewhat unexpected. There 

is a floating-point datatype in almost every language; 

computers, ranging from personal computers to 
supercomputers, have floating-point accelerators; most 

compilers will occasionally need to assemble floating-

point algorithms; and almost all operating systems 

have to handle floating-point exceptions, like overflow. 

This article provides an overview of the characteristics 

of floating-point that directly affect computer system 

designers. Background information on rounding error 

and floating-point representation is provided at the 

outset, followed by a description of the IEEE floating-

point standard and a plethora of examples showing how 

computer manufacturers might improve support for 

floating-point.  
 

A software program that uses the binary encoding 

format to perform IEEE 754R decimal floating-point 

arithmetic  

A significant contribution is the definition of decimal 

floating-point arithmetic [8], [24], which was added to 

the IEEE Standard 754-1985 for binary floating-point 

arithmetic [19], which was amended [20]. Because 

binary floating-point arithmetic may produce slight but 

unacceptable mistakes, the primary goal of this is to 

offer a strong and dependable framework for financial 
applications that are frequently subject to regulatory 

constraints for rounding and accuracy of the results. To 

address this problem, binary floating-point calculations 

were used to simulate decimal calculations. This 

approach has resulted in the development of many 

proprietary software packages, each with unique 

features and functionalities. The implementation of 

IEEE 754R decimal arithmetic ought to standardize 

decimal floating-point computations across platforms. 

This work presents new methods and features that are 

applied to a software implementation of IEEE 754R 

decimal floating-point arithmetic with a focus on 
effective usage of binary operations. Although 

algorithms for the more significant or fascinating 

operations of addition, multiplication, and division—

including the case of nonhomogeneous operands—as 

well as conversions between binary and decimal 

floating-point formats are outlined, the main focus is 

on rounding techniques for decimal values stored in 

binary format. Performance results are provided for a 

greater variety of operations, indicating potential use of 

our method for decimal floating-point computations 

applications. This work builds upon a previous 
publication [6].  

 

From the standpoint of testing and implementation, 

decimal floating-point in Z9  

Despite the widespread usage of decimal arithmetic in 

financial and commercial applications, the associated 

calculations are managed by software. Applications 

that employ decimal data may thus see a decrease in 

performance. Performance gains for such applications 

are anticipated when the newly specified decimal 

floating-point (DFP) format is used in place of binary 

floating-point. The first IBM computer to support DFP 

instructions is the System z9TM. We give a summary 

of this approach and offer some metrics for the 
performance improvements made possible by 

hardware assistance. A detailed presentation of the 

many instruments and methods used for the DFP 

verification at the unit, element, and system levels is 

made available. Using a shared reference model to 

forecast DFP findings, many IBM groups worked 

together to verify the new DFP facility.  

 

The IBM System Z10 CPU has support for decimal 

floating points.  

The decimal floating-point (DFP) feature, first 

introduced on the IBM System z9® processor, is now 
supported by hardware on the newest IBM zSeries® 

CPU, the IBM System z10TM processor. The z9® 

processor uses a combination of hardware and low-

level software to implement the capability. The System 

pTM 570 server, which runs on the IBM POWER6TM 

CPU, has unveiled a hardware implementation of the 

DFP function. The most recent zSeries processor 

contains an improved decimal floating-point unit that 

supports the standard decimal fixed-point instruction 

set of the zSeries and is based on the POWER6 

processor DFP unit. This document describes the new 
software support for the DFP facility, which includes 

support in IBM DB2® and middleware, as well as 

compilers for IBM z/OS®, JavaTM JIT, and C/C++. 

The hardware architecture to support dual decimal 

fixed point and DFP is explained as well.  

 

The decimal floating-point accelerator, IBM 

zEnterprise-196  

When rounding problems make it impossible to 

employ binary floating-point operations, decimal 

floating-point arithmetic is frequently used in 

commercial computing applications, such as financial 
transactions. Standardized decimal floating-point 

(DFP) formats were established by the updated IEEE 

Standard for Floating-Point Arithmetic (IEEE-754-

2008). Hardware accelerators supporting IEEE decimal 

floating-point are becoming increasingly common as 

more software programs implement it. The IBM 

zEnterprise-196 processor's second-generation decimal 

floating-point accelerator is described in this 

publication. The 4-cycle deep pipeline was created 

with the goal of greatly increasing DFP operation 

bandwidth while optimizing fixed-point decimal 
operation latency. The unit is described in great length, 

and a comparison with other implementations available 

in the literature is given.  

 

Fujistsu's next-generation 16-core CPU for Unix 

servers, the Sparc64 X  

The Sparc64 X from Fujitsu is a 3 GHz processor 

designed for Unix servers. It has 16 cores, a shared 

level-2 (L2) cache of 24 Mbyte, memory controllers, 
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I/O controllers, and system controllers for 

interconnecting multiple chips. The authors of this 

paper improved the microarchitecture and included the 

High-Performance Computing Arithmetic 

Computational Extensions (HPC-ACE) extended 
instruction set, which was previously utilized in the K 

computer. There has a peak memory bandwidth of 102 

Gbps. These characteristics provide incredibly high 

throughput capabilities. Furthermore, the designers 

enhanced the processor core pipelines with additional 

features that speed up software operations like 

processing cryptography. These features are referred to 

as "software on chip" (SWoC). In addition, they make 

advantage of mainframe-derived high-reliability 

technologies to guarantee mission-critical systems run 

reliably. This page provides an introduction of the 

Sparc64 X processor family, details the 
microarchitecture's historical and present 

developments, and displays the findings of tests 

conducted to evaluate the power and performance of 

SWoC. 

 

PROPOSED METHODOLOGY 

 
Coefficient, fraction, and exceptional values. 

 

This paper presents new ideas and contributions to 

decimal floating-point numbers. It introduces a new 

representation and encoding of exact and inexact 

decimal numbers. Inexact decimal numbers cannot be 

normalized if there is a loss of significant digits. They 

propagate in computations. This paper also 

distinguishes between exact zero and inexact ones that 

represent absolute errors in computations. It defines 

inexact equality and introduces inexact arithmetic on 
inexact decimal numbers. 

 

MODULE EXPLANATION: 

A. UNIVERSAL NUMBERS, IEEE 754, AND 

IEEE 1788  

2008 saw the introduction of the IEEE 754 decimal 

standard, which was updated in 2019 [5]. There are 

four levels to it. The mathematical structure is defined 

at the first level as an extended collection of real 

numbers that includes both positive and negative 

infinity. An extended real number is mapped to a 
floating-point value by rounding. There is a many-to-

one connection. An algebraic closed system on 

floating-point data is defined at the second level. 

Signed zeros, finite non-zero numbers, signed 

infinities, and not-a-numbers (NaN) are examples of 

floating-point datums. The representation of floating-

point data is defined at level three, while its binary 

encoding is defined at level four.  
The decimal standard designates the interchange 

formats with widths of 32, 64, and 128 bits, 

respectively, as decimal32, decimal64, and 

decimal128. 

As seen in Figure 2, the format consists of three fields: 

a combination field, a trailing coefficient field, and a 

sign bit S. The biased exponent E and the leading digit 

of the coefficient are encoded in the combination field's 

(5 + w) bits. This definition was made in order to 

maximize the exponent range and optimize the 

encoding of the leading digit.  

3k decimal digits are encoded in 10k bits (k declets) in 
the trailing coefficient field. With p = 3k + 1 decimal 

digits, the integer coefficient C has decimal precisions 

of 7, 16, and 34 for decimal32, decimal64, and 

decimal128 correspondingly. A decimal float has the 

following numerical value: (−1)S × C × 10E−Bias.  

There are two ways to encode the decimal coefficient 

according to the decimal standard. Three decimal digits 

can be effectively encoded using 10-bit declets in the 

first encoding technique, called Densely Packed 

Decimal (DPD). As explained in [6], DPD needs basic 

logic to unpack and pack the BCD digits at the start and 
finish of each operation. BCD digits are used internally 

by decimal floating-point units for arithmetic 

operations. The decimal coefficient is encoded using a 

binary integer in the second encoding strategy. This is 

referred to as BID encoding, or Binary Integer 

Decimal. It is easier to use this encoding system than 

DPD. Nevertheless, hardware implementation is the 

biggest challenge when utilizing the BID encoding. For 

example, left and right shifters are used to align the 

decimal coefficients in order to create a decimal 

floating-point adder in hardware. For the DPD 

encoding that packs BCD digits, this is effective. 
Nevertheless, the BID encoding raises the cost and 

complicates the hardware alignment of the two 

components. It is recommended to implement left and 

right shifting as hardware multipliers by positive and 

negative powers of ten. Negative powers of 10, such 

10−1 and 10−2, however, cannot be precisely 

expressed in binary. Because of this, software 

implementations that utilize binary hardware are the 

primary users of BID encoding. There are several 

software options available.  

The decNumber C library [8], the Java BigDecimal 
[10], the C# decimal [9], the Intel Decimal FP library 

[7], and SQL decimal [11]. The speed of software 

libraries is a downside. It has been observed that 

software-implemented operations operate 100–1000 

times slower than hardware-implemented operations 

[3].  

A decimal number, in contrast to a binary floating-

point number, can have more than one representation. 

The cohort of a floating-point number is the collection 

http://www.ijesat.com/


International Journal of Engineering Science and Advanced Technology (IJESAT)                          

Vol 24 Issue 09, SEP, 2024 

ISSN No: 2250-3676   www.ijesat.com Page | 96  

of representations to which a decimal number 

translates [1]. There exist (p − n + 1) representations of 

a non-zero integer with n significant decimal digits 

(beginning at the most significant non-zero digit and 

terminating at the least significant non-zero digit), 
where p is the precision. In decimal32, for instance, the 

value 0.2 may be represented in seven different ways: 

0.2 = 2 × 10−1 = 20 × 10−2 =... = 2000000 × 10−7. 

Specifically, zero has a huge cohort: each exponent is 

represented in the cohort of 0 [1]. Several popular 

processors, including the IBM Power [12], IBM 

System Z [13], [14], and [15], as well as the Fujitsu 

Sparc64 processors [16], were the first to use decimal 

floating-point units. In addition to decimal adders with 

injection-based rounding and associated operations 

[19], [20], and [21], Wang and Schulte also presented 

the implementation of decimal floating-point square 
root and division using Newton-Raphson iteration [17], 

[18]. The construction of parallel decimal multipliers 

was demonstrated by Vasquez et al. [22], [23]. A 

hybrid binary/decimal floating-point fused multiply 

add unit was demonstrated by Wahba and Fahmy [24]. 

The inability of the IEEE 754 decimal floating-point 

standard to discriminate between accurate and 

imprecise decimal values (which also applies to binary 

integers) is a significant source of worry. When 

rounding occurs, the standard specifies an inexact 

operation. On the other hand, neither the binary 
encoding nor the representation provide information 

about whether a computed result is inaccurate. 

Specifically, the error of an operation is increased when 

the coefficient of an imprecise input operand is left-

shifted, inserting erroneous trailing zeros.  

Improving floating-point arithmetic quality requires 

being able to distinguish between accurate and inexact 

integers. An infinitely precise result indicates that a 

series of floating-point operations produced an exact 

result. Conversely, an imprecise outcome will alert the 

user to the extent of the mistake in a particular 

calculation. 

 

I. INTERVAL ARITHMETIC AND IEEE 1788 

Since the 1960s, mathematicians have been using 

interval arithmetic [25] to set limitations on rounding 

mistakes and create techniques that provide accurate 

results. Intervals are the inputs used in all 

computations, and the outputs are also intervals. It is 

ensured that the calculated intervals contain the precise 

computation values. The Fundamental Theorem of 

Interval Arithmetic (FTIA) [26] is the most valuable 

aspect of interval arithmetic. Four layers make up the 
IEEE 1788 standard [27] for interval arithmetic. The 

definition of an interval on real numbers and the 

functions of operations on intervals are laid forth in the 

first level of mathematics. The discretization of 

intervals, which establishes the interval endpoints and 

types. The fourth level deals with binary encoding, 

whereas the third level deals with representing 

intervals using floating-point integers. 

As long as they agree on common definitions, the 

standard is also intended to support several flavors, or 

models, of intervals. The set-based taste has gained 

traction thus far. In order to manage exceptions, the 

standard affixes tags, also known as decorations, to 
every interval. Compared to IEEE 754, the IEEE 1788 

standard includes additional relational operators. 

Relational operators for intervals include subset, 

precedes, precedes or touches, and interior to, in 

addition to checking for equality, less than, and less 

than or equal. Additionally, several predicates—like 

before, meets, overlaps, and contains—do not exist in 

IEEE 754. In 2017, the IEEE 1788 standard was 

updated and streamlined to incorporate the functions 

and features that are most frequently utilized in real-

world scenarios [28]. A pair of IEEE 754 binary64 

floating-point integers, a decorating system for 
exception-free calculations, and a propagation of the 

calculated results' attributes are what constitute an 

interval. Compared to IEEE 754, the IEEE 1788 

standard is more complicated. There isn't any hardware 

integration. As a proof of concept, only software-

compliant libraries have been created. Octave library 

[29] and libieee1788 [30] are two examples of them. 

The wrapping problem and the dependence problem, 

which result in huge expansions of the generated 

intervals and offer no information on the solution, are 

two main shortcomings of interval arithmetic and IEEE 
1788. 

 

II. UNIVERSAL NUMBERS 

Gustafson suggested universal numbers, or Unums, as 

an alternative to the IEEE 754 standard. The 

significand and exponent are stored in a variable-width 

format in the initial version, referred to as Type 1 

Unum [31]. The size of the exponent and fraction are 

specified in the esize and fsize variables. The 64-bit 

binary float is an example of a "one size fits all" option 

that a programmer is relieved of due to its variable 

dynamic range and accuracy. But the author 
acknowledges that Type 1 unums have a lot of 

disadvantages, especially when it comes to hardware 

implementation [32]. They need to be emptied into a 

designated storage space. To reference the other fields, 

one must first read the additional level of indirection 

added by the esize and fsize fields. Certain bits patterns 

are not utilized, and certain values can be stated in more 

than one manner.  

Signed two's complement integers are directly mapped 

to the projective real number line as type 2 unums [32]. 

On a circle, real numbers are mapped so that positive 
and negative infinity converge at the top. The u-lattice 

is the user-defined collection of precise reals between 

1 and infinity that has been chosen. But since it doesn't 

make use of positional representation or the 

conventional radix, table lookup is necessary. 

Requiring the two's complement of the remaining bits 

and preserving the sign bit, one may effortlessly 

determine the reciprocal of a Type 2 unum. Division 

approaches the speed of multiplication. There is no 
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need for an exception because infinity is the reciprocal 

of zero and vice versa. But for simple arithmetic 

operations like addition, subtraction, and 

multiplication, Type 2 unums are hard to extend to high 

precision and require huge database lookups (that 
increase exponentially with precision). On the other 

hand, algorithmic techniques that are simple to 

implement in hardware make working with floating 

point numbers easier.  

Type 3, or Posits, is the most recent iteration of unums 

[33]. Similar to binary floats, positivism provides more 

accuracy in the vicinity of one. They have four fields 

in their tapered floating-point format (sign bit, regime, 

exponent, and fraction), making it significantly more 

difficult than IEEE 754. Similar to binary floats, 

posesits are rounded. There is no indication of precise 

decimal fractions (0.1 + 0.2 ̸= 0.3) or difference 
between rounded and exact possibilities. Small 8-bit or 

16-bit posits are utilized in machine learning, where 

they have shown to be beneficial. Positivity is 

becoming more and more popular. A high-performance 

IEEE 754-Posit conversion hardware was constructed 

by Mathis and Stine [41], and a unified Posit/IEEE 754 

vector MAC unit was implemented by Crespo et al. 

[40].  

Nonetheless, there are instances in which propositions 

do worse than floating-point, such as in simulations of 

particle physics [34]. The rounding error in the product 
of two posits is not necessarily a posit, multiplying a 

posit by a power of two is not always correct, and posits 

can become ugly in multiplicative cancellation, as 

discussed in [34].  

 

B. EXACT VERSUS INEXACT DECIMAL 

NUMBERS 

This work explains arithmetic on both sorts of numbers 

(something not done in IEEE 754) and concentrates on 

differentiating between precise and inexact decimal 

floating-point integers. Due of their capacity to 

accurately represent decimal fractions, decimal floats 
will be the subject of this discussion.  

Within the infinite continuum of real numbers, a single 

discrete value is represented by an accurate decimal 

floating-point number. Zero errors can be made in its 

representation. For a precise decimal float to have a 

distinct representation, it must be normalized. Not in 

IEEE 754, but in my job, this is a need. Except in cases 

when the number is 0, the first digit (d) of the 

coefficient cannot be zero. For instance, 

2,000,000×10−7 with p=7 decimal digits is the unique 

representation of the precise decimal value 0.2. The 
idea is to have every precise decimal float have a 

unique representation. The idea of cohorts is dropped. 

To convert a decimal32 number exactly into a 

decimal64 number, add trailing zeros to the significand 

and modify the exponent. For instance, when 0.2 = 

2,000,000 × 10−7 is translated to decimal64, it 

becomes 2,000,000,000,000,000 × 10−16 with 16 

decimal digits. If one of the nine trailing decimal digits 

that are displaced away from the significand is nonzero, 

the conversion from an exact decimal64 number to an 

exact decimal32 number might result in an inexact 

value. Finite precision cannot accurately represent an 

imprecise decimal number. For instance, 3,141,592.H 

× 10−6 (with p = 7) is an imprecise decimal32 
representation of π, where 0.H denotes a large fraction 

(0.5 ≤ 0.H < 1). A 0.H × 10−6 absolute inaccuracy is 

present. π may be represented indecisively in 

decimal64 as 3,141,592,653,589,793.L is × 10−15 (p = 

16), where a low proportion is denoted by 0.L (0 ≤ 0.L 

< 0.5). A 0.L × 10−15 absolute inaccuracy is present.  

An imprecise integer, like π, does not get more precise 

when converted from decimal32 to decimal64. The 

following has leading zeros added: π = 

0,000,000,003,141,592.H = 10^-6. Unknown trailing 

digits prevent an inexact number from being left-

shifted and normalized if it hasn't been normalized. In 
conclusion, it's possible or not to normalize imprecise 

decimal values using a distinct representation. As seen 

in Figure1, they have .L or .H representations that 

denote low or high fraction intervals: 0.L = [0, 0.5) and 

0.H = [0.5, 1). An operation with precise or inexact 

operands might produce an inexact number. Rounding 

is not utilized, though. An interval inside the infinite 

real number continuum is an imprecise number. 

Interval arithmetic is not utilized, though. This work 

defines, instead, inexact arithmetic on inexact decimal 

values. 
 

A. EXACT VERSUS INEXACT ZEROS 

As per the IEEE 754 decimal standard, zero is defined 

as a big cohort with a zero significand and an arbitrary 

value in the exponent field. For every exponent value 

q, zero equals ⁷0 × 10q. Exact zero has no special 

symbol, while inexact zero has no defined term.  

This work, however, makes a distinction between 

accurate and inexact zeros. Since all bits are zeros, 

exact zero has a unique representation. It has no sign 

bit and is expressed as 0. Inexact zeros, on the other 

hand, are many, signed, and denoted as 0.L×10q or 
0.H× 10q. They stand for calculation errors. It might be 

either 0.L or 0.H. Nonetheless, the error's magnitude is 

indicated by the exponent q. 

 

B. FORMAT 

As seen in Figure 3, this work proposes a new format 

for both accurate and inexact decimal values. The four 

fields in it are the sign bit (S), the biased exponent field 

(E), the 5-bit digit field D (which encodes the leading 

decimal digit of the coefficient and indicates if the 

number is exact or not), and the trailing coefficient 
field T (10 × n bits, or n declets) that contains the 

trailing 3 × n decimal digits of the coefficient. 

 
FIGURE 3. A new floating-point format for decimal 

exchange. 
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The fields, bit-length, and significant values of the 

recently proposed decimal floats, DFP32, DFP64, and 

DFP128—with lengths of 32, 64, and 128 bits, 

respectively—are defined in Table 1. There are m bits 

in the exponent field. A finite decimal number has a 
biased exponent range of E = 0 to 2m −1, and a biased 

exponent of 2m −1 + p −1, where p is the precision (p 

= 7, 16, and 34 for DFP32, DFP64, and PDF128 

respectively). 

 
TABLE 1. Decimal values, both precise and inexact, 

and field lengths. 

 

An integer coefficient C, which is the product of the 

leading decimal digit in the D field and the third 

decimal digits in T, is the significand of a decimal 

number. 

An precise decimal number has the value ⁷C × 10q. An 

imprecise decimal value can have the value ⁌C.L × 10q 

or ⁌C.H × 10q, where q = E − Bias. Although it is not 

as broad as that specified in the IEEE 754 standard, the 
exponent range for DFP32, DFP64, and DFP128 is 

described in Table 1 and is still enough for 

applications. The precision p is the same, though. 

 

 
TABLE 2. The D field encoded in five bits. 

 

C. LEADING DIGIT AND TRAILING 

COEFFICIENT 

The 4-bit leading digit d of the integer coefficient C is 

encoded in the 5-bit D field, which also shows whether 

a decimal value is precise or not. Table 2 displays the 

encoding. The integer is either an exact zero or an 

extraordinary value if D = E = 0. The decimal value is 
precise, the leading digit d = 1 to 9, and the integer 

coefficient C is normalized if D = 1 to 7, 24, or 25. The 

decimal value is imprecise and its coefficient is 

expanded with a small fraction if D falls between 8 and 

15, 26, or 27. If D falls between 16 and 23, 28, or 29, 

the decimal value is equally imprecise, but it is 
stretched out using a large fraction. An inexact decimal 

number's leading digit (d) ranges from 0 to 9, thus 

normalizing its integer coefficient shouldn't be done.  

It's easy to decode the 5-bit D field = abcde into a 4-bit 

leading decimal digit, d = wxyz: d = 0cde for D values 

between 0 and 23, and d = 100e for D values between 

24 and 29. The following are the logic expressions: z = 

e, y = d&∼w, x = c&∼w, and w = a&b.  

As seen in Figure 4, the integer coefficient C is the 

result of concatenating the trailing coefficient T with 

the leading digit D. Densely packed decimal is used to 
encode the T field (DPD). It is inexpensive and requires 

only a few basic formulae to unpack and load the 10-

bit declets into three BCD digits [6].  

Table 2 does not specify the leading digit d if D = 0 and 

E  ̸= 0, or if D = 30 or 31. D might be set to decimal 10 

as one possibility. 1099... 9 is the maximum coefficient 

C. If D = 0, the decimal number is accurate; if D = 30, 

or 31, it is not exact. Using an expanded exponent 

range with d set to 0 is an alternative. With the loss of 

one significant digit (d), the coefficient C becomes the 

trailing field T, while the exponent range is expanded. 

 
FIGURE 4. COefficient, proportion, and exceptional 

values 

 

D. EXCEPTIONAL VALUES 

There are five exceptions that can be caught in a 

particular calculation according to the IEEE 754 

standard. These include division by zero, overflow, 

underflow, inexact, and incorrect operation. Either 

capturing a trap or putting a flag in a floating-point 

status register indicates an exception. Floating-point 

results from computational processes may indicate 

floating-point exceptions. An imprecise operation 
yields a rounded result, following IEEE 754. In my 

work, an imprecise operation yields an imprecise 

outcome, which may be either ⁌C.H × 10q or ⁎C.L × 

10q. There is no need for a hardware flag, and there is 

no rounding.  

It is possible to substitute exceptional values recorded 

in the binary representation for the hardware flags 

included in the floating-point status register. This paper 

defines three extraordinary values. Overflow is a 
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signed decimal float that is unrepresentable due to its 

huge exponent. −OVF < x < +OVF holds true for each 

finite decimal float x that can be expressed.  

Underflow (UNF) is the reciprocal of Overflow, and 

vice versa. In order to give a steady underflow to 
precise zero, IEEE 754 employs denormalized 

integers; nonetheless, this work defines UNF as an 

extraordinary value, which is distinct from zero. −OVF 

< −x < −UNF < 0 < +UNF < x < +OVF holds for each 

positive finite decimal integer x. The result OVF × 

UNF is uncertain, or NaN, as should be mentioned. The 

third value that is uncommon is Not-a-Number (NaN). 

It can be Not-a-Real, like the square root of a negative 

integer, or ambiguous, like dividing zero by zero. NaN 

values are unordered and have an uncertain sign. 

 
TABLE 3. Coding the extraordinary values. 

 

When both D and E are zero, exceptional values are 

encoded using the T field, as Table 3 illustrates. The 

value is exactly zero and the sign bit is ignored if D = 

E = T = 0. The exceptional values are NaN, OVF, and 

UNF, respectively, if D = E = 0 and T  ̸= 0. The sign bit 

is ignored by the NaN and Zero values. Different NaN 

exceptional values, including indeterminate and Not-a-

Real, can also be encoded. 
 

C. DECIMAL ADDITION AND SUBTRACTION 

Exact decimal floating-point number addition and 

subtraction are clearly stated. The coefficient of the 

number with the smaller exponent must be moved to 

the right in order to raise its exponent if the exponents 

disagree. In my job, we normalize precise decimal 

values, thus we don't count the leading zeros or shift a 

source operand to the left in order to reduce its 

exponent. Next, the difference or total is normalized. 

Even with correct operands, addition and subtraction 

can provide imprecise results. This happens when the 
normalized significand's fractional component isn't 

zero. There isn't any rounding, though. The L or H 

fraction is used to denote an approximate result if the 

fraction that occurs after the decimal point indicates 

that the result is not accurate.  

However, it is more complicated to add and subtract 

imprecise decimal floating-point values. How to define 

arithmetic on 0.L and 0.H is the question. Utilizing 

interval arithmetic is one option. For instance, 0.L + 

0.L may equal either 0.L or 0.H, 0.L + 0.H may equal 

either 0.H or 1.L, and 0.H + 0.H may equal either 1.L 
or 1.H. Similarly, 0.L − 0.L, 0.H − 0.H, and 0.H − 0.L 

can all be ⁎0.L, 0.H − 0.L can be either 0.H or 0.L, and 

0.L − 0.H can be either −0.H or −0.L. The disadvantage 

of interval arithmetic is that the result can only be 

represented with two ends. Over a series of operations, 

the intervals get larger and more complicated, which 

makes implementation more difficult. This work offers 

a straightforward method for dealing with arithmetic 

on imprecise decimal floating-point Although the 

arithmetic is imprecise, the results are more 

trustworthy than those produced, per IEEE 754. It 
makes it abundantly evident that the outcome is 

imprecise and does not add complexity to the decimal 

floating-point unit's hardware implementation.  

The single-digit approximations of 0.L and 0.H are 

used in inexact arithmetic. 0.L ≈ 0.2 and 0.H ≈ 0.7 are 

the options. The reasoning behind this is that the 

median for 0 to 4 is 2, while the median for 5 to 9 is 7. 

There is a 0.5 difference between 0.L and 0.H. 

Likewise, there is a 0.5 difference between 0.H and 

1.L. 

 
TABLE 4. Addition to 0.L and 0.H that is not 

accurate. 
 

Table 4 defines inexact addition to ⁷0.L and ⁷0.H. In 

this case, 0.L + 0.H ≈ 0.9 ≈ 0.H, 0.L + 0.H ≈ 0.2 + 0.2 

≈ 0.L, and 0.H + 0.H ≈ 1.4 ≈ 1.L (not 1.H). Likewise, 

the definitions of (0.L − 0.L) and (0.H − 0.H) are + 0.L. 

But −0.L + 0.L turns into −(0.L − 0.L) ≈ −0.L instead 

of + 0.L. All the other items in Table 4 come from 

consistent sources.  

A shifted coefficient can be added or subtracted using 

the same digit approximation. For instance, 0.L + 0.8 ≈ 

1.L, 0.H + 0.8 ≈ 1.5 ≈ 1.H, and 0.L + 0.3 means 0.2 + 
0.3 ≈ 0.H. Similarly, 0.L − 0.8 equals −0.H, 0.H − 0.8 

≈ −0.L, and 0.L − 0.3 = 0.2 − 0.3 ≈ −0.L. An procedure 

for adding and subtracting two decimal values, x and y, 

is shown in Figure 5. Software or hardware can be used 

to implement the algorithm.  

In the first stage, all of the x and y fields are extracted 

using the format shown in Figure 4. A digit (.0,.2, or.7) 

is then injected for the fraction F, and the exceptional 

values are decoded. To prevent a negative zero 

outcome, the sign bit Sx or Sy of an input x or y is 

cleared if it is zero.  

In step two, the biased exponents Ex and Ey are 
compared, and their maximum Eu and absolute 

difference d are calculated.  

Step 3 generates the switched significands {Su, Cu, 

Fu} and {Cv, Fv} by swapping the input operands if 

Ex < Ey. 

Step 4 finds the input operation Op, where ADD is 0 

and SUB is 1, as well as the effective operation EOP 

based on the sign bits Sx and Sy.  

In the event where the first swapped operand is exact 

(Fu == 0) and there is a difference in the exponents (d!= 

0), Step 5 stores the guard digit for subtraction, if 
necessary. To preserve the guard digit, the new 

coefficient Cu is moved one decimal place to the left. 
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Additionally decremented are the maximum exponent 

Eu and the exponent difference d.  

Furthermore, Step 5 moves the significand {Cv, Fv} to 

the right in accordance with the exponent difference d 

to get {Cw, Fw, Inx}. By doing this, the significands 
are aligned to share one exponent, Eu. If any fraction 

digit is pushed out or deleted, the Inx (inexact) flag is 

raised. 

Step 6 processes the aligned significands {Cu, Fu} and 

{Cw, Fw} by adding or subtracting them using BCD. 

It computes the magnitude of the result significand 

{Carry, Csum, Fsum} using a BCD adder, converts 

subtraction into addition to the BCD (10's) 

complement, then computes LT to determine whether 

{Cu, Fu} is smaller than {Cw, Fw}. This step computes 

its BCD counterpart in order to post-correct the 

magnitude of the result {Cr, Fr} if LT == 1 for 
subtraction. This is basically required for the 

implementation of hardware. Nevertheless, the Binary 

Integer Decimal (BID) encoding, which utilizes the 

binary hardware to calculate the total or difference, 

may be used in software implementation. In Step 6, the 

outcome sign Sr = Su ∧ LT is also computed, 

complementing the sign bit Su if LT. 

In step 7, the common exponent Eu is adjusted and the 

result significand {Cr, Fr} obtained in step 6 is 

normalized. The exponent Eu is lowered and the result 
significand {Cr, Fr} is shifted-left in accordance with 

the count LZ of leading zeros in Cr if it is accurate and 

contains leading zero digits. To provide a distinctive 

depiction of the outcome, this is required. In the event 

that the result contains an additional Carry digit, the 

exponent Eu is increased and {Carry, Cr, Fr} is moved 

one BCD digit to the right. The output {En, Cn, Fn} is 

normalized after step 7. En is lowered to 0 if the 

outcome is precisely zero.  

Note that the seventh normalization step is adaptive 

and may identify precise and imprecise results. It 

differs from significance arithmetic, which does not 
distinguish between the two, in this way. The lack of 

rounding options and rounding steps makes 

implementation easier.  

Step 8 identifies overflow and underflow, processes the 

exceptional inputs NaN, OVF, and UNF, and generates 

an extraordinary output.  

In step nine, the final normalized result is encoded and 

packed. For instance, let us add two precise DFP32 

input operands: x = −6254763 × 10−5 and y = 

−9877012 × 10−4. Ex < Ex, hence the operands in the 

input must be switched. {Cv, Fv} = {6254763, 0}, {Cu, 
Fu} = {9877012, 0}, and the sign Su = Sy = 1. The 

effective operation EOP = 0, which is addition, has a 

maximum exponent of Eu = −4 + bias. {Cv, Fv} needs 

to be shifted one BCD digit to the right in order to 

become {Cw, Fw} = {0625476, 3} and Inx = 1 due to 

the difference in exponents. The result of adding the 

significands is {Carry, Csum, Fsum} = {1, 0502488, 

3}. Sr = Su = 1 is the outcome sign. The exponent is 

increased to En = Eu + 1 = −3 + bias and the significand 

is normalized to {Cn, Fn} = {1050248, 8} due to the 

Carry. R = −1050248.H × 10−3, the approximate 

result, is encoded in accordance with Table 2 and 

Figure 4.  

Now remove x = +1000234 × 10−1 and y = +9876543 

× 10−2 from each other. Since {Cv, Fv} = {9876540, 
0} and {Cu, Fu} = {1000234, 0}, Ex > Ey. Subtraction 

is represented by the sign Su = Sx = 0, the exponent Eu 

= −1 + bias, and the EOP = 1. The exponent Eu is 

decremented to become Eu = −2 + bias, the exponent 

difference is decremented to become d = 0, and the Cu 

coefficient is shifted-left one decimal digit to become 

Cu = 10002340 in order to preserve the guard digit. 

This is only applied to subtraction when there is an 

exponent discrepancy and the precise number is the one 

with the greater exponent. The two significands {Cw, 

Fw, Inx} = {9876543, 0, 0} are already aligned. After 

that, subtraction is changed to addition to the 
complement of ten, and {Ct, Ft} = {90123457, 0} is the 

result. In order to extend the coefficient and acquire the 

correct sign of the result, the leftmost digit, 9, is entered 

into Ct. {Carry, Csum, Fsum} = {10002340, 0} + 

{90123457, 0} = {0, 0125797, 0} is the result of adding 

the significands. Zero is the carry digit. It shows that 

(LT = 0) the outcome is positive. The result would have 

been negative (LT = 1) if the Carry digit had been 9, 

necessitating the post-correction of the result 

significand using the 10's complement of the {Csum, 

Fsum}. As the fraction is precise and the computed 
Csum has a leading zero, it is shifted-left and 

normalized to become {Cn, Fn} = {1257970, 0}. After 

decrementing the exponent, the answer is R = 

+1257970 × 10−3. 

 
 

 

D. DECIMAL COMPARISON 
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With the exception of NaN, all floating-point numbers 

are sorted according to IEEE 754. There are four 

mutually incompatible relations given two floating-

point numbers: equality (EQ), less than (LT), greater 

than (GT), or unordered (UN). Even if two rounded 
numbers reflect distinct real numbers, they can 

nevertheless be equal.  

Equality has two connotations in my work. It may be 

precise or imprecise. If two finite decimal values, x and 

y, are accurate and have the same binary encoding due 

to normalization with a distinct representation, then 

they are equal (EQ). Should x and y be equal, then the 

difference between them (x - y) should be 0. 

Conversely, two inexact decimal values, or an exact 

with an inexact decimal value, can be compared using 

inexact or approximation equality (AE). 

 
FIGURE 6. comparing x and y, two decimal values.  

 

An algorithm for comparing two decimal values, x and 

y, is shown in Figure 6. The relations equality (EQ), 

approximate equality (AE), less than (LT), larger than 

(GT), and unordered (UN) are the five that are mutually 

incompatible. Strict ordering applies to exact decimal 

floats. −OVF < −x < −UNF < 0 < +UNF < +x < +OVF 

holds for each positive precise decimal value x. When 

two finite decimal integers x and y have the same sign 

and at least one of them is imprecise, their aligned 

significands are nearly identical to one decimal place: 
x ≈ y ≈ C.L × 10q, or x ≈ y ≈ C.H × 10q. C × 10q, 

however, < C.L × 10q < C.H × 10q. Exact zero is 

smaller than inexact zero in a similar manner. 

Consider the case where x = 314.y = 31415 and L × 

10−2.If there are two estimates of π, H × 10−4, with 

distinct exponents, then x and y have to line up. With a 

smaller exponent, y's significand is pushed to the right, 

becoming y = 31415.H × 10−4 ≈ 314.L × 10−2, which 

represents x and y's approaching equivalence. 

Similarly, z = 314.1 × 10−2 ≈ 314 if z = 3141000 × 

10−6 is an exact decimal value.Approximately, x 
equals L × 10−2. But z equals 31410.y = 31415 is less 

than 0×10−4.H × 10−4. This illustration demonstrates 

that while perfect equality is transitive, approximate 

equality is not. Since NaN values are unordered, no 

decimal number x can be compared to them. In the 

same way, two OVF (or UNF) values with the same 
sign cannot be sorted. Nevertheless, there is a finite 

decimal number x that determines the order of the UNF 

and OVF values.  

The Boolean functions isUNF, isOVF, isNaN, isExact, 

isZero, and isInexactZero can also be used to determine 

the value of a decimal number. For instance, if the 

operand x is exact, the function isExact(x) returns true. 

Specifically, UNF, OVF, and NaN are imprecise.  

The == operator is widely used in computer languages 

to test equality. An operator to test approximate 

equality does not exist. In my work, approximate 

equality is tested using the Boolean function AE(x, y), 
whereas precise equality is tested using the statement 

(x == y). 

 

DECIMAL MULTIPLICATION 

Decimal multiplication does not require the 

significands to line up when the exponents are 

different, in contrast to addition and subtraction. It's 

easy to multiply two accurate decimal values. The 

exponents are added and the decimal coefficients are 

multiplied. Next, the coefficient of result is normalized. 

The outcome becomes imprecise if one of the numbers 
that has been pushed out is not zero. Whether the 

fraction is 0.L or 0.H is shown by the final shifted-out 

digit.  

It is more complex to multiply two inexact decimal 

numbers (or an exact number multiplied by an inexact 

decimal number) because multiplying an integer 

coefficient by 0.L or 0.H increases the mistake. To 

approach 0.L and 0.H, digit injection is employed, 

much like in addition and subtraction. If alternative 

approximations of 0.L and 0.H are employed, different 

outcomes are obtained, as seen in 

 
The coefficients of 987.L × 10−3 and 6543.H × 10+2 

in the example above contain three and four significant 

digits, respectively. The product coefficient, with 
various approximations of 0.L and 0.H, reaches more 

than seven digits. The product's remaining numbers are 

incorrect and ought to be thrown away, but the three 

most important ones are relevant. As a result, the 

exponent has to be increased and the product 

coefficient needs to be moved to the right. Generally 

speaking, the product coefficient should only have r = 

min(m, n) digits given two decimal values, x and y, 

having coefficients with m and n significant digits. The 
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remaining numbers ought to be changed because they 

are useless. 

An technique for multiplying two decimal values, x and 

y, is shown in Figure 7. This algorithm can be 

implemented in hardware or software. The first step 
extracts each of the x and y fields. In Step 2, Cu and Cv 

are created by injecting Fx and Fy into Cx and Cy. In 

order to assess the precision of the outcome, it further 

counts the maximum leading zeros (LZ) in the 

coefficients Cx and Cy when an input is imprecise. In 

Step 3, the product sign Sr and the biased exponent Ep 

of Cp = Cu × Cv are calculated. The product Cp is 

computed in step 4. Step 5 is the computation of LZp, 

or the number of leading zeros in Cp. Additionally, it 

moves the product Cp to the right in order to get a result 

coefficient Cr that is limited to the fewest significant 

digits in Cx and Cy. As a result, there is an inexact flag 
(Inx) that shows if every shifted-out digit is non-zero, 

together with a shifted significand ({Cr, Fr}). Step 6 

manages extraordinary inputs and generates 

extraordinary outcomes. The result R is packed and 

encoded in step 7. Assuming x = -0017652.y = 

+0145678 and H × 10−2.Cu = {0017652, 7} and Cv = 

{0145678, 2} for L × 10−3. The leading zero maximum 

is LZ = 2. The exponent of the result is Ep = −7+ bias, 

the product is Cp = 0,000,257,161,356,114, and the 

result sign is Sr = 1 (negative). LZp = 4 is the number 

of leading zeros in Cp, while SA = 7 is the shift amount. 
{Cr, Fr, Inx} = {0025716, 1, 1} is the result of shifting 

Cp seven digits to the right. The exponent is then 

increased to become Er = 0+ bias. Finally, we get R = 

-0025716.L × 100. 

 
FIGURE 7. multiplying x and y, two decimal 

integers. 

 

F. DECIMAL DIVISION 

The significands of two finite decimal floating-point 

values, x and y, are divided by their respective 

significands, and the exponents are then subtracted. 

Next, the outcome is normalized to the necessary level 

of accuracy. The result coefficient should be limited to 
r = min(m, n) significant digits, just like in 

multiplication, where m and n represent the number of 

significant digits in Cx and Cy. After injecting Fy, the 

dividend becomes {Cx, Fx, 0... 0}, while the divisor 

becomes {Cy, Fy}. Fx is followed by n + 1 decimal 

zeros. A quotient with either (m + 1) or (m + 2) digits 

is obtained by dividing an integer with (m + n + 2) 

decimal digits by a divisor with (n + 1) digits. 

The division of two imprecise decimal integers using 

various estimates of 0.L and 0.H is demonstrated in the 

example below: 

 
 

 
FIGURE 8. dividing x and y, two decimal integers. 

 

An procedure for splitting two decimal values, x and y, 

is shown in Figure 8. Step 2 creates a coefficient Cu 

with (2p + 2) decimal digits by injecting Fx (0, 2, or 7) 
and (p + 1) decimal zeros into Cx, where p is the 

precision. Fy (0, 2, or 7) is also injected into Cy to 

create a coefficient Cv with (p + 1) decimal digits. In 

addition, the maximum number of leading zeros in 

coefficients Cx and Cy is counted in this step: LZ = 
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max(LZx, LZy). This is required to ascertain the 

accuracy of the outcome when an input operand is 

imprecise.  

The sign of the result Sr=Sx ∧ Sy is calculated in step 

three, where ∧ denotes the XOR operator. 

Additionally, it calculates the quotient's biased 

exponent: Ex − Ey − p − 1 + Bias = Equation.  

The decimal coefficients are divided in step 4: Cu/Cv 

equals Cq. In this phase, a quotient Cq with a maximum 

of 2p + 2 decimal digits and an Inx flag indicating an 

imprecise division (Inx might be 0 or 1) are produced. 

In Step 5, the number of leading zeros in Cq is 

calculated, or LZq. The shift amount is calculated using 

the precision p, LZ, and LZq as follows: SA = (p + 2 + 

LZ − LZq). Er = Eq + SA is the biased exponent that is 
computed, and the Cq quotient is shifted to the right. 

The resultant output consists of a sticky inexact flag Inx 

that specifies whether every shifted-out digit is 

nonzero, and a shifted significand {Cr, Fr} = 

BCD_SHR (Cq, SA). There are p decimal digits in the 

result coefficient Cr. Fr, the resultant fraction, is one 

decimal place. Step 6 identifies overflow and 

underflow and deals with unusual inputs.  

In step seven, the result R is encoded and packed along 

with the significand {Cr, Fr}, exponent Er, and sign bit 

Sr.  

For instance, think about dividing x = -6257652.y × 
10−2 = + 9815678= H.L × 10−5. Next, Cv = {9815678, 

2} and Cu = {6257652, 7, 00000000}. There are no 

leading zeros in Cx and Cy, as shown by LZx = LZy = 

0 and LZ = 0. With Sr=1, Eq = −2 + 5−8=−5+Bias. Inx 

= 1 and Cq = 0000000063751608. LZq = 8, Er = −4 + 

Bias, and SA = 7 + 2 + 0 − 8 = 1 are the shift amounts. 

After that, Cq is moved to the right to create {Cr, Fr} = 

{6375160, 8}. The calculated outcome is R = -

63752060.H × 10−4.  

 

SIMULATION RESULTS: 
 

 

 

 

 

 
 

CONCLUSION 

The input domain of floating-point expressions can 

have a significant impact on them. In order to magnify 

the inaccuracy and highlight the flaws in the IEEE 754 
standard, the inputs listed in Table 5 were chosen. The 

correct result, calculated with 128-bit decimal 

arithmetic, is displayed in the first column. Afterwards, 

the integer coefficients are decreased to a maximum of 

16 decimal places, which corresponds to the 64-bit 

binary and decimal floating-point values' precision. 

This results in an adjustment of the exponent. If the 

genuine result has more than 16 decimal places, a 

fraction is utilized.  

The second and third columns display the rounded 

float64 and decimal64 values together with their 

corresponding mistakes. The final column displays the 
DFP64 inexact result. The approximations for the .L 

and .H are 0.2 and 0.7, respectively. The calculated 

result is displayed below the relative and ULP errors. 

The calculations for decimal64 and float64 are rounded 

to the nearest. These examples do not include the 

rounding tie scenario. Conclusions can be made based 

on Table 5's data. Arithmetic and floating-point 

numbers in binary are often less precise than those in 

decimal. This is explained by the decimal input 

fractions' imprecise binary representation. The second 

conclusion is that incorrect bits and digits are 
propagated during calculation by the 16-digit 

decimal64 coefficient and the 53-bit float64 

significand. This is demonstrated by the ULP error, 
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which increases exponentially with the amount of 

incorrect digits. This results from injecting incorrect 

zero bits or digits during the normalization of 

significands with leading zero bits or digits to optimize 

accuracy in the IEEE 754 floating-point arithmetic 
procedures. In my job, however, this is not permitted 

when the outcomes or operands are not exact. It should 

only be acceptable to normalize significands with 

leading zero digits if the outcome is precise. The ULP 

error is therefore minimized, as Table 5 for DFP64 

illustrates.  

The final conclusion, which is illustrated in Table 5, is 

that inexact arithmetic warns users when important 

digits are lost in real-time computations. If inexact 

floating-point numbers have an explicit representation, 

this may be easily identified by the programmer. The 

IEEE 754 numbers and arithmetic operations, which 
have been directly implemented in hardware and 

accepted by programming languages and numeric 

analytic tools for decades [42], nonetheless lack this 

imprecise representation, which necessitates the real-

time identification of significant calculation mistakes 

as detailed in this work.  

This paper presents only a portion of the work that has 

been done. Further developments include a more 

thorough error analysis for imprecise computing in real 

time. Work is being done on a hardware 

implementation of arithmetic operations with both 
accurate and inexact floating-point integers. 
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