
International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 92

EXACT VERSUS INEXACT DECIMAL FLOATING-POINT NUMBERS

AND ARITHMETIC

Sadia Noor1, Ms Nilofer2

1PG Scholar, Department of DSCE, Shadan Women’s College of Engineering and Technology, Hyderabad,

sadianoor367@gmail.com
2Assistant Professor, Department of ECE, Shadan Women’s College of Engineering and Technology,

nilofernilofer2022@gmail.com

ABSTRACT
There is no distinction made between accurate and inexact floating-point numbers in the IEEE 754

standard. The binary encoding lacks a bit or field that determines whether a floating-point integer is precise. For

both binary and decimal floats, this is true. A floating-point status register's inexact flag is raised by an inexact

operation. The result is rounded to make it appear correct when utilized in a subsequent procedure. Because the

floating-point arithmetic unit evaluates every input operand as if it were accurate, the computed results may

contain significant mistakes. This essay explains arithmetic operations on both kinds of numbers and concentrates

on differentiating between precise and inexact decimal values. The user may be certain that every decimal place

in the computed result is accurate if the outcome of a series of operations is precise. On the other hand, a loss of

significant digits happens if certain input operands are not correct or if the output cannot be calculated exactly.

For the approximate calculated value, a separate representation is employed. The imprecise calculated result

includes an estimate of the absolute inaccuracy as well. The arithmetic operations and decimal numbers presented
in this work yield results that are more accurate than those calculated using the IEEE 754 standard. In the latter

portion of this work, a basic assessment is presented.

INTRODUCTION

The original 1985 binary standard [2] was expanded by

the IEEE 754-2008 standard [1] for floating-point

arithmetic, which added decimal (radix-10) floating-

point integers. Because they prevent the rounding

mistakes that usually happen when translating a

decimal fraction in data entered by humans into a

binary fraction, decimal numbers are required. As an

illustration, the decimal fraction 0.7 becomes
0.699999988 in a 32-bit binary representation. The

binary fraction has to be precisely rounded. When there

is an error in a calculated result, decimal values are also

rounded. The Radix-10 rounding rules, however, are

more focused on people. Financial computations,

business databases, banking, taxation, and currency

conversions all often involve decimal numbers [3].

Although binary numbers may also be helpful in

scientific and technical applications, their widespread

hardware support makes them widely employed. The

difference between accurate and imprecise decimal
floating-point values is discussed in this work. The

infinite continuum of real numbers has one discrete

value that corresponds to an exact number. Zero errors

can be made in its representation. There is no rounding.

Decimal floating-point numbers can only accurately

represent a finite subset of real numbers due to the

restricted precision p of the significand.

Conversely, a decimal number that is not accurate

cannot be expressed precisely to a finite degree of

accuracy. Since some real values, like π, cannot be

represented accurately, they must be rounded to the

floating-point representation's level of accuracy.
Even in cases when the operands are accurate, an

inexact decimal number may arise from an inexact

operation that necessitates rounding. Every imprecise

floating-point operation and outcome has a

corresponding mistake. An imprecise decimal number

corresponds to a range of actual numbers because of

the representation's poor accuracy. An inexact decimal

number and an infinite set of real numbers are defined

as a one-to-infinite relation.

A decimal number is represented numerically as ⁌C ×

10q, where q is a signed exponent and C is an integer

coefficient made up of p decimal digits. The number is

subnormal if C's first digit is zero. It becomes
normalized otherwise. The same decimal value may

have more than one representation, and the IEEE 754

standard does not mandate that decimal values be

normalized. Regretfully, the same decimal

representation may be rounded or accurate. The bit or

field that indicates whether a decimal number is

rounded does not exist. Whether implemented in

software or hardware, floating-point operations

consider all operands as if they were accurate, which

might lead to significant inaccuracies in the computed

output.
Take the addition of four decimal32 integers, for

instance, in the following particular order: ((W + X) +

Y) + Z). A signed exponent, an integer coefficient with

a maximum of 7 decimal digits—the precision of

decimal32—and a sign bit are used to represent each

decimal input. The following inputs are all accurate and

were selected to increase the error: Z = −1001 × 10−4,

Y = −2,124,578 × 10−1, X = 8,900,123 × 10−2, and W

= 1,234,567 × 10−1.

(W + X) is first calculated. The coefficient of X with

the lower exponent needs to be moved to the right

because of the difference in exponents: X = 8,900,123
× 10−2 = 890,012.3×10−1. Next, the coefficients are

rounded to the nearest whole number (W + X) =

2,124,579 × 10−1. While the relative error is minor, the

result is not exact: (0.3/2,124,579.3) ≈ 1.412 × 10−7.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 93

Then, (W + X) + Y = 2,124,579 × 10−1 + −2,124,578

× 10−1 = 1 × 10−1. The first input operand and the total

are not accurate, but the operation is. [4] refers to this

subtraction as catastrophic as it has obliterated six

meaningful digits. The current relative error is at 0.3 ×
10−1/1.3 × 10−1, or 23%. It should be mentioned that

even with digit cancellation, the output would have

been accurate and error-free if both input operands had

been exact. On the other hand, the IEEE 754 standard

offers no information on the accuracy of the input

operands.

At last, Z = 1 × 10−1 + −1001 × 10−4 ((W + X) + Y)

+ Z. IEEE 754 states that min(EA, EB) is the favored

exponent for decimal addition. When adding a decimal

with a bigger exponent to a decimal with a smaller

exponent, the coefficient of the larger decimal number

has to be left-shifted if it contains leading zeros.
Consequently, 1 × 10−1 turns into 1000 × 10−4 and

1000 × 10−4 + −1001 × 10−4 = −1 × 10−4. The actual

outcome is, however, 1300 × 10−4 + −1001 × 10−4 =

299 × 10−4. Because the negative sign was computed

incorrectly, the overall relative error has exceeded

100%. Once more, the operation is precise, but the

operand used as the initial input and the outcome are

not. But an exact operation and an exact outcome are

not distinguished in the IEEE 754 standard. In

conclusion, a single imprecise operation usually has a

minor relative error. However, the relative error might
increase significantly during a series of procedures.

The example above demonstrates the necessity of

differentiating between accurate and imprecise decimal

values. Even when following procedures are perfect, an

imprecise number transmitted in the computation

might lead to a significant total inaccuracy. Doing

arithmetic on non-integer decimal numbers requires a

different approach.

A. INEXACT DECIMAL NUMBERS

This study suggests a novel way to encode and compute

inexact floating-point arithmetic for decimal floating-
point integers. Figure 1 illustrates how two inexact

decimal numbers, C.L × 10q and C.H × 10q, are

defined in between two successive exact decimal

numbers, C × 10q and (C + 1) × 10q, with the same

exponent q. In the range [0, 0.5], the L is a low fraction

and the H is a high fraction [0.5, 1). Inaccurate

arithmetic calculations yield an approximation of the L

and H values, which are unknown.

Think about adding the same four digits from the

previous decimal place. In order to get (W + X), first

multiply 1,234,567 × 10−1 by 8 and then add 900, 123
× 10−2 to get 1,234,567 × 10−1 plus 890,012.3 × 10−1

≈ 2,124,579.L × 10−1. It is not exact what (W + X)

yields. A low fraction is indicated by the.L notation,

where 0.L < 0.5. The outcome is not squared. Rather,

the inexact result representation now includes the.L

notation. (W + X) + Y = 2,124,579 follows.1.L × 10−1

= L×10−1+−2,124,578× 10−1 = 1. The operation is

accurate, but the outcome is not.

Ultimately, 1.L × 10−1 + −1001 × 10−4 = ((W + X) +

Y) + Z. Since 1.L × 10−1 is not accurate, it cannot be

left shifted. It is not equivalent to 1000 that L × 10−1.L

× 10−4. Z must thus be moved to the right: Z = -1.001

× 10−1. Thus, 1.L × 10−1 + −1.001 × 10−1 ≈ 0.L ×
10−1 ((W + X) + Y) + Z. This outcome is compatible

with the correct total of 0.299 × 10−1, however it is an

absolute mistake with zero significant digits. It informs

the programmer that there is a better way to perform

the computation. On the other hand, the IEEE 754

result (−1 × 10−4) is not trustworthy. To boost

instruction-level parallelism, computing (W + X) + (Y

+ Z) in a different sequence yields a different result.

IEEE 754 states that, after rounding, (Y + Z) =

−2,124,578 × 10−1 + −1001 × 10−4 ≈ −2,124,579 ×

10−1. With a relative error of 100%, the result R is

2,124,579 × 10−1 + −2,124,579 × 10−1 = 0. It gets
more difficult to debug.

Define two imprecise decimals in between each pair of

consecutive accurate ones in Figure 1.

By using the imprecise depiction proposed in Figure 1,

(Y + Z) ≈ −2,124,579.Since L × 10−1 is not accurate,

the total equals 2,124,579.L = 10^-1 + -2.1245779.L

10^-1 ≈ 0.L 10^-1. This result is congruent with the
genuine result and is similar to the one calculated using

serial addition. This correction fixes floating-point

arithmetic in decimals. It should be mentioned that

decimal32 is defined as non-basic in IEEE 754. It

serves as a point of reference in the example. Any size

and precision of floating-point values can have

computational mistakes.

LITERATURE SURVEY

Computer algebra in decimal floating-point format.

Human-centric applications need to employ decimal

floating-point arithmetic in order to obtain the same
results as decimal arithmetic, which is the standard in

human computations. Early measurements show that

because software decimal arithmetic has a 100× to

1000× performance penalty over hardware, some

programs appear to spend 50% to 90% of their time

processing decimals. Decimal floating-point is

desperately needed in hardware. However, current

designs either don't meet current requirements or don't

work with the accepted principles of decimal

arithmetic. This study presents a novel method for

decimal floating-point that satisfies the limitations and
specifications of the IEEE 854 standard while still

producing the rigorous outcomes required for

commercial applications. This arithmetic is being

implemented in hardware, and it is anticipated that this

will greatly speed many different applications.

What is important to know about floating point

arithmetic for computer scientists

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 94

Many people view floating-point math as an arcane

subject. Given how commonplace floating-point is in

computer systems, this is somewhat unexpected. There

is a floating-point datatype in almost every language;

computers, ranging from personal computers to
supercomputers, have floating-point accelerators; most

compilers will occasionally need to assemble floating-

point algorithms; and almost all operating systems

have to handle floating-point exceptions, like overflow.

This article provides an overview of the characteristics

of floating-point that directly affect computer system

designers. Background information on rounding error

and floating-point representation is provided at the

outset, followed by a description of the IEEE floating-

point standard and a plethora of examples showing how

computer manufacturers might improve support for

floating-point.

A software program that uses the binary encoding

format to perform IEEE 754R decimal floating-point

arithmetic

A significant contribution is the definition of decimal

floating-point arithmetic [8], [24], which was added to

the IEEE Standard 754-1985 for binary floating-point

arithmetic [19], which was amended [20]. Because

binary floating-point arithmetic may produce slight but

unacceptable mistakes, the primary goal of this is to

offer a strong and dependable framework for financial
applications that are frequently subject to regulatory

constraints for rounding and accuracy of the results. To

address this problem, binary floating-point calculations

were used to simulate decimal calculations. This

approach has resulted in the development of many

proprietary software packages, each with unique

features and functionalities. The implementation of

IEEE 754R decimal arithmetic ought to standardize

decimal floating-point computations across platforms.

This work presents new methods and features that are

applied to a software implementation of IEEE 754R

decimal floating-point arithmetic with a focus on
effective usage of binary operations. Although

algorithms for the more significant or fascinating

operations of addition, multiplication, and division—

including the case of nonhomogeneous operands—as

well as conversions between binary and decimal

floating-point formats are outlined, the main focus is

on rounding techniques for decimal values stored in

binary format. Performance results are provided for a

greater variety of operations, indicating potential use of

our method for decimal floating-point computations

applications. This work builds upon a previous
publication [6].

From the standpoint of testing and implementation,

decimal floating-point in Z9

Despite the widespread usage of decimal arithmetic in

financial and commercial applications, the associated

calculations are managed by software. Applications

that employ decimal data may thus see a decrease in

performance. Performance gains for such applications

are anticipated when the newly specified decimal

floating-point (DFP) format is used in place of binary

floating-point. The first IBM computer to support DFP

instructions is the System z9TM. We give a summary

of this approach and offer some metrics for the
performance improvements made possible by

hardware assistance. A detailed presentation of the

many instruments and methods used for the DFP

verification at the unit, element, and system levels is

made available. Using a shared reference model to

forecast DFP findings, many IBM groups worked

together to verify the new DFP facility.

The IBM System Z10 CPU has support for decimal

floating points.

The decimal floating-point (DFP) feature, first

introduced on the IBM System z9® processor, is now
supported by hardware on the newest IBM zSeries®

CPU, the IBM System z10TM processor. The z9®

processor uses a combination of hardware and low-

level software to implement the capability. The System

pTM 570 server, which runs on the IBM POWER6TM

CPU, has unveiled a hardware implementation of the

DFP function. The most recent zSeries processor

contains an improved decimal floating-point unit that

supports the standard decimal fixed-point instruction

set of the zSeries and is based on the POWER6

processor DFP unit. This document describes the new
software support for the DFP facility, which includes

support in IBM DB2® and middleware, as well as

compilers for IBM z/OS®, JavaTM JIT, and C/C++.

The hardware architecture to support dual decimal

fixed point and DFP is explained as well.

The decimal floating-point accelerator, IBM

zEnterprise-196

When rounding problems make it impossible to

employ binary floating-point operations, decimal

floating-point arithmetic is frequently used in

commercial computing applications, such as financial
transactions. Standardized decimal floating-point

(DFP) formats were established by the updated IEEE

Standard for Floating-Point Arithmetic (IEEE-754-

2008). Hardware accelerators supporting IEEE decimal

floating-point are becoming increasingly common as

more software programs implement it. The IBM

zEnterprise-196 processor's second-generation decimal

floating-point accelerator is described in this

publication. The 4-cycle deep pipeline was created

with the goal of greatly increasing DFP operation

bandwidth while optimizing fixed-point decimal
operation latency. The unit is described in great length,

and a comparison with other implementations available

in the literature is given.

Fujistsu's next-generation 16-core CPU for Unix

servers, the Sparc64 X

The Sparc64 X from Fujitsu is a 3 GHz processor

designed for Unix servers. It has 16 cores, a shared

level-2 (L2) cache of 24 Mbyte, memory controllers,

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 95

I/O controllers, and system controllers for

interconnecting multiple chips. The authors of this

paper improved the microarchitecture and included the

High-Performance Computing Arithmetic

Computational Extensions (HPC-ACE) extended
instruction set, which was previously utilized in the K

computer. There has a peak memory bandwidth of 102

Gbps. These characteristics provide incredibly high

throughput capabilities. Furthermore, the designers

enhanced the processor core pipelines with additional

features that speed up software operations like

processing cryptography. These features are referred to

as "software on chip" (SWoC). In addition, they make

advantage of mainframe-derived high-reliability

technologies to guarantee mission-critical systems run

reliably. This page provides an introduction of the

Sparc64 X processor family, details the
microarchitecture's historical and present

developments, and displays the findings of tests

conducted to evaluate the power and performance of

SWoC.

PROPOSED METHODOLOGY

Coefficient, fraction, and exceptional values.

This paper presents new ideas and contributions to

decimal floating-point numbers. It introduces a new

representation and encoding of exact and inexact

decimal numbers. Inexact decimal numbers cannot be

normalized if there is a loss of significant digits. They

propagate in computations. This paper also

distinguishes between exact zero and inexact ones that

represent absolute errors in computations. It defines

inexact equality and introduces inexact arithmetic on
inexact decimal numbers.

MODULE EXPLANATION:

A. UNIVERSAL NUMBERS, IEEE 754, AND

IEEE 1788

2008 saw the introduction of the IEEE 754 decimal

standard, which was updated in 2019 [5]. There are

four levels to it. The mathematical structure is defined

at the first level as an extended collection of real

numbers that includes both positive and negative

infinity. An extended real number is mapped to a
floating-point value by rounding. There is a many-to-

one connection. An algebraic closed system on

floating-point data is defined at the second level.

Signed zeros, finite non-zero numbers, signed

infinities, and not-a-numbers (NaN) are examples of

floating-point datums. The representation of floating-

point data is defined at level three, while its binary

encoding is defined at level four.
The decimal standard designates the interchange

formats with widths of 32, 64, and 128 bits,

respectively, as decimal32, decimal64, and

decimal128.

As seen in Figure 2, the format consists of three fields:

a combination field, a trailing coefficient field, and a

sign bit S. The biased exponent E and the leading digit

of the coefficient are encoded in the combination field's

(5 + w) bits. This definition was made in order to

maximize the exponent range and optimize the

encoding of the leading digit.

3k decimal digits are encoded in 10k bits (k declets) in
the trailing coefficient field. With p = 3k + 1 decimal

digits, the integer coefficient C has decimal precisions

of 7, 16, and 34 for decimal32, decimal64, and

decimal128 correspondingly. A decimal float has the

following numerical value: (−1)S × C × 10E−Bias.

There are two ways to encode the decimal coefficient

according to the decimal standard. Three decimal digits

can be effectively encoded using 10-bit declets in the

first encoding technique, called Densely Packed

Decimal (DPD). As explained in [6], DPD needs basic

logic to unpack and pack the BCD digits at the start and
finish of each operation. BCD digits are used internally

by decimal floating-point units for arithmetic

operations. The decimal coefficient is encoded using a

binary integer in the second encoding strategy. This is

referred to as BID encoding, or Binary Integer

Decimal. It is easier to use this encoding system than

DPD. Nevertheless, hardware implementation is the

biggest challenge when utilizing the BID encoding. For

example, left and right shifters are used to align the

decimal coefficients in order to create a decimal

floating-point adder in hardware. For the DPD

encoding that packs BCD digits, this is effective.
Nevertheless, the BID encoding raises the cost and

complicates the hardware alignment of the two

components. It is recommended to implement left and

right shifting as hardware multipliers by positive and

negative powers of ten. Negative powers of 10, such

10−1 and 10−2, however, cannot be precisely

expressed in binary. Because of this, software

implementations that utilize binary hardware are the

primary users of BID encoding. There are several

software options available.

The decNumber C library [8], the Java BigDecimal
[10], the C# decimal [9], the Intel Decimal FP library

[7], and SQL decimal [11]. The speed of software

libraries is a downside. It has been observed that

software-implemented operations operate 100–1000

times slower than hardware-implemented operations

[3].

A decimal number, in contrast to a binary floating-

point number, can have more than one representation.

The cohort of a floating-point number is the collection

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 96

of representations to which a decimal number

translates [1]. There exist (p − n + 1) representations of

a non-zero integer with n significant decimal digits

(beginning at the most significant non-zero digit and

terminating at the least significant non-zero digit),
where p is the precision. In decimal32, for instance, the

value 0.2 may be represented in seven different ways:

0.2 = 2 × 10−1 = 20 × 10−2 =... = 2000000 × 10−7.

Specifically, zero has a huge cohort: each exponent is

represented in the cohort of 0 [1]. Several popular

processors, including the IBM Power [12], IBM

System Z [13], [14], and [15], as well as the Fujitsu

Sparc64 processors [16], were the first to use decimal

floating-point units. In addition to decimal adders with

injection-based rounding and associated operations

[19], [20], and [21], Wang and Schulte also presented

the implementation of decimal floating-point square
root and division using Newton-Raphson iteration [17],

[18]. The construction of parallel decimal multipliers

was demonstrated by Vasquez et al. [22], [23]. A

hybrid binary/decimal floating-point fused multiply

add unit was demonstrated by Wahba and Fahmy [24].

The inability of the IEEE 754 decimal floating-point

standard to discriminate between accurate and

imprecise decimal values (which also applies to binary

integers) is a significant source of worry. When

rounding occurs, the standard specifies an inexact

operation. On the other hand, neither the binary
encoding nor the representation provide information

about whether a computed result is inaccurate.

Specifically, the error of an operation is increased when

the coefficient of an imprecise input operand is left-

shifted, inserting erroneous trailing zeros.

Improving floating-point arithmetic quality requires

being able to distinguish between accurate and inexact

integers. An infinitely precise result indicates that a

series of floating-point operations produced an exact

result. Conversely, an imprecise outcome will alert the

user to the extent of the mistake in a particular

calculation.

I. INTERVAL ARITHMETIC AND IEEE 1788

Since the 1960s, mathematicians have been using

interval arithmetic [25] to set limitations on rounding

mistakes and create techniques that provide accurate

results. Intervals are the inputs used in all

computations, and the outputs are also intervals. It is

ensured that the calculated intervals contain the precise

computation values. The Fundamental Theorem of

Interval Arithmetic (FTIA) [26] is the most valuable

aspect of interval arithmetic. Four layers make up the
IEEE 1788 standard [27] for interval arithmetic. The

definition of an interval on real numbers and the

functions of operations on intervals are laid forth in the

first level of mathematics. The discretization of

intervals, which establishes the interval endpoints and

types. The fourth level deals with binary encoding,

whereas the third level deals with representing

intervals using floating-point integers.

As long as they agree on common definitions, the

standard is also intended to support several flavors, or

models, of intervals. The set-based taste has gained

traction thus far. In order to manage exceptions, the

standard affixes tags, also known as decorations, to
every interval. Compared to IEEE 754, the IEEE 1788

standard includes additional relational operators.

Relational operators for intervals include subset,

precedes, precedes or touches, and interior to, in

addition to checking for equality, less than, and less

than or equal. Additionally, several predicates—like

before, meets, overlaps, and contains—do not exist in

IEEE 754. In 2017, the IEEE 1788 standard was

updated and streamlined to incorporate the functions

and features that are most frequently utilized in real-

world scenarios [28]. A pair of IEEE 754 binary64

floating-point integers, a decorating system for
exception-free calculations, and a propagation of the

calculated results' attributes are what constitute an

interval. Compared to IEEE 754, the IEEE 1788

standard is more complicated. There isn't any hardware

integration. As a proof of concept, only software-

compliant libraries have been created. Octave library

[29] and libieee1788 [30] are two examples of them.

The wrapping problem and the dependence problem,

which result in huge expansions of the generated

intervals and offer no information on the solution, are

two main shortcomings of interval arithmetic and IEEE
1788.

II. UNIVERSAL NUMBERS

Gustafson suggested universal numbers, or Unums, as

an alternative to the IEEE 754 standard. The

significand and exponent are stored in a variable-width

format in the initial version, referred to as Type 1

Unum [31]. The size of the exponent and fraction are

specified in the esize and fsize variables. The 64-bit

binary float is an example of a "one size fits all" option

that a programmer is relieved of due to its variable

dynamic range and accuracy. But the author
acknowledges that Type 1 unums have a lot of

disadvantages, especially when it comes to hardware

implementation [32]. They need to be emptied into a

designated storage space. To reference the other fields,

one must first read the additional level of indirection

added by the esize and fsize fields. Certain bits patterns

are not utilized, and certain values can be stated in more

than one manner.

Signed two's complement integers are directly mapped

to the projective real number line as type 2 unums [32].

On a circle, real numbers are mapped so that positive
and negative infinity converge at the top. The u-lattice

is the user-defined collection of precise reals between

1 and infinity that has been chosen. But since it doesn't

make use of positional representation or the

conventional radix, table lookup is necessary.

Requiring the two's complement of the remaining bits

and preserving the sign bit, one may effortlessly

determine the reciprocal of a Type 2 unum. Division

approaches the speed of multiplication. There is no

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 97

need for an exception because infinity is the reciprocal

of zero and vice versa. But for simple arithmetic

operations like addition, subtraction, and

multiplication, Type 2 unums are hard to extend to high

precision and require huge database lookups (that
increase exponentially with precision). On the other

hand, algorithmic techniques that are simple to

implement in hardware make working with floating

point numbers easier.

Type 3, or Posits, is the most recent iteration of unums

[33]. Similar to binary floats, positivism provides more

accuracy in the vicinity of one. They have four fields

in their tapered floating-point format (sign bit, regime,

exponent, and fraction), making it significantly more

difficult than IEEE 754. Similar to binary floats,

posesits are rounded. There is no indication of precise

decimal fractions (0.1 + 0.2 ̸= 0.3) or difference
between rounded and exact possibilities. Small 8-bit or

16-bit posits are utilized in machine learning, where

they have shown to be beneficial. Positivity is

becoming more and more popular. A high-performance

IEEE 754-Posit conversion hardware was constructed

by Mathis and Stine [41], and a unified Posit/IEEE 754

vector MAC unit was implemented by Crespo et al.

[40].

Nonetheless, there are instances in which propositions

do worse than floating-point, such as in simulations of

particle physics [34]. The rounding error in the product
of two posits is not necessarily a posit, multiplying a

posit by a power of two is not always correct, and posits

can become ugly in multiplicative cancellation, as

discussed in [34].

B. EXACT VERSUS INEXACT DECIMAL

NUMBERS

This work explains arithmetic on both sorts of numbers

(something not done in IEEE 754) and concentrates on

differentiating between precise and inexact decimal

floating-point integers. Due of their capacity to

accurately represent decimal fractions, decimal floats
will be the subject of this discussion.

Within the infinite continuum of real numbers, a single

discrete value is represented by an accurate decimal

floating-point number. Zero errors can be made in its

representation. For a precise decimal float to have a

distinct representation, it must be normalized. Not in

IEEE 754, but in my job, this is a need. Except in cases

when the number is 0, the first digit (d) of the

coefficient cannot be zero. For instance,

2,000,000×10−7 with p=7 decimal digits is the unique

representation of the precise decimal value 0.2. The
idea is to have every precise decimal float have a

unique representation. The idea of cohorts is dropped.

To convert a decimal32 number exactly into a

decimal64 number, add trailing zeros to the significand

and modify the exponent. For instance, when 0.2 =

2,000,000 × 10−7 is translated to decimal64, it

becomes 2,000,000,000,000,000 × 10−16 with 16

decimal digits. If one of the nine trailing decimal digits

that are displaced away from the significand is nonzero,

the conversion from an exact decimal64 number to an

exact decimal32 number might result in an inexact

value. Finite precision cannot accurately represent an

imprecise decimal number. For instance, 3,141,592.H

× 10−6 (with p = 7) is an imprecise decimal32
representation of π, where 0.H denotes a large fraction

(0.5 ≤ 0.H < 1). A 0.H × 10−6 absolute inaccuracy is

present. π may be represented indecisively in

decimal64 as 3,141,592,653,589,793.L is × 10−15 (p =

16), where a low proportion is denoted by 0.L (0 ≤ 0.L

< 0.5). A 0.L × 10−15 absolute inaccuracy is present.

An imprecise integer, like π, does not get more precise

when converted from decimal32 to decimal64. The

following has leading zeros added: π =

0,000,000,003,141,592.H = 10^-6. Unknown trailing

digits prevent an inexact number from being left-

shifted and normalized if it hasn't been normalized. In
conclusion, it's possible or not to normalize imprecise

decimal values using a distinct representation. As seen

in Figure1, they have .L or .H representations that

denote low or high fraction intervals: 0.L = [0, 0.5) and

0.H = [0.5, 1). An operation with precise or inexact

operands might produce an inexact number. Rounding

is not utilized, though. An interval inside the infinite

real number continuum is an imprecise number.

Interval arithmetic is not utilized, though. This work

defines, instead, inexact arithmetic on inexact decimal

values.

A. EXACT VERSUS INEXACT ZEROS

As per the IEEE 754 decimal standard, zero is defined

as a big cohort with a zero significand and an arbitrary

value in the exponent field. For every exponent value

q, zero equals ⁷0 × 10q. Exact zero has no special

symbol, while inexact zero has no defined term.

This work, however, makes a distinction between

accurate and inexact zeros. Since all bits are zeros,

exact zero has a unique representation. It has no sign

bit and is expressed as 0. Inexact zeros, on the other

hand, are many, signed, and denoted as 0.L×10q or
0.H× 10q. They stand for calculation errors. It might be

either 0.L or 0.H. Nonetheless, the error's magnitude is

indicated by the exponent q.

B. FORMAT

As seen in Figure 3, this work proposes a new format

for both accurate and inexact decimal values. The four

fields in it are the sign bit (S), the biased exponent field

(E), the 5-bit digit field D (which encodes the leading

decimal digit of the coefficient and indicates if the

number is exact or not), and the trailing coefficient
field T (10 × n bits, or n declets) that contains the

trailing 3 × n decimal digits of the coefficient.

FIGURE 3. A new floating-point format for decimal

exchange.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 98

The fields, bit-length, and significant values of the

recently proposed decimal floats, DFP32, DFP64, and

DFP128—with lengths of 32, 64, and 128 bits,

respectively—are defined in Table 1. There are m bits

in the exponent field. A finite decimal number has a
biased exponent range of E = 0 to 2m −1, and a biased

exponent of 2m −1 + p −1, where p is the precision (p

= 7, 16, and 34 for DFP32, DFP64, and PDF128

respectively).

TABLE 1. Decimal values, both precise and inexact,

and field lengths.

An integer coefficient C, which is the product of the

leading decimal digit in the D field and the third

decimal digits in T, is the significand of a decimal

number.

An precise decimal number has the value ⁷C × 10q. An

imprecise decimal value can have the value ⁌C.L × 10q

or ⁌C.H × 10q, where q = E − Bias. Although it is not

as broad as that specified in the IEEE 754 standard, the
exponent range for DFP32, DFP64, and DFP128 is

described in Table 1 and is still enough for

applications. The precision p is the same, though.

TABLE 2. The D field encoded in five bits.

C. LEADING DIGIT AND TRAILING

COEFFICIENT

The 4-bit leading digit d of the integer coefficient C is

encoded in the 5-bit D field, which also shows whether

a decimal value is precise or not. Table 2 displays the

encoding. The integer is either an exact zero or an

extraordinary value if D = E = 0. The decimal value is
precise, the leading digit d = 1 to 9, and the integer

coefficient C is normalized if D = 1 to 7, 24, or 25. The

decimal value is imprecise and its coefficient is

expanded with a small fraction if D falls between 8 and

15, 26, or 27. If D falls between 16 and 23, 28, or 29,

the decimal value is equally imprecise, but it is
stretched out using a large fraction. An inexact decimal

number's leading digit (d) ranges from 0 to 9, thus

normalizing its integer coefficient shouldn't be done.

It's easy to decode the 5-bit D field = abcde into a 4-bit

leading decimal digit, d = wxyz: d = 0cde for D values

between 0 and 23, and d = 100e for D values between

24 and 29. The following are the logic expressions: z =

e, y = d&∼w, x = c&∼w, and w = a&b.

As seen in Figure 4, the integer coefficient C is the

result of concatenating the trailing coefficient T with

the leading digit D. Densely packed decimal is used to
encode the T field (DPD). It is inexpensive and requires

only a few basic formulae to unpack and load the 10-

bit declets into three BCD digits [6].

Table 2 does not specify the leading digit d if D = 0 and

E ̸= 0, or if D = 30 or 31. D might be set to decimal 10

as one possibility. 1099... 9 is the maximum coefficient

C. If D = 0, the decimal number is accurate; if D = 30,

or 31, it is not exact. Using an expanded exponent

range with d set to 0 is an alternative. With the loss of

one significant digit (d), the coefficient C becomes the

trailing field T, while the exponent range is expanded.

FIGURE 4. COefficient, proportion, and exceptional

values

D. EXCEPTIONAL VALUES

There are five exceptions that can be caught in a

particular calculation according to the IEEE 754

standard. These include division by zero, overflow,

underflow, inexact, and incorrect operation. Either

capturing a trap or putting a flag in a floating-point

status register indicates an exception. Floating-point

results from computational processes may indicate

floating-point exceptions. An imprecise operation
yields a rounded result, following IEEE 754. In my

work, an imprecise operation yields an imprecise

outcome, which may be either ⁌C.H × 10q or ⁎C.L ×

10q. There is no need for a hardware flag, and there is

no rounding.

It is possible to substitute exceptional values recorded

in the binary representation for the hardware flags

included in the floating-point status register. This paper

defines three extraordinary values. Overflow is a

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 99

signed decimal float that is unrepresentable due to its

huge exponent. −OVF < x < +OVF holds true for each

finite decimal float x that can be expressed.

Underflow (UNF) is the reciprocal of Overflow, and

vice versa. In order to give a steady underflow to
precise zero, IEEE 754 employs denormalized

integers; nonetheless, this work defines UNF as an

extraordinary value, which is distinct from zero. −OVF

< −x < −UNF < 0 < +UNF < x < +OVF holds for each

positive finite decimal integer x. The result OVF ×

UNF is uncertain, or NaN, as should be mentioned. The

third value that is uncommon is Not-a-Number (NaN).

It can be Not-a-Real, like the square root of a negative

integer, or ambiguous, like dividing zero by zero. NaN

values are unordered and have an uncertain sign.

TABLE 3. Coding the extraordinary values.

When both D and E are zero, exceptional values are

encoded using the T field, as Table 3 illustrates. The

value is exactly zero and the sign bit is ignored if D =

E = T = 0. The exceptional values are NaN, OVF, and

UNF, respectively, if D = E = 0 and T ̸= 0. The sign bit

is ignored by the NaN and Zero values. Different NaN

exceptional values, including indeterminate and Not-a-

Real, can also be encoded.

C. DECIMAL ADDITION AND SUBTRACTION

Exact decimal floating-point number addition and

subtraction are clearly stated. The coefficient of the

number with the smaller exponent must be moved to

the right in order to raise its exponent if the exponents

disagree. In my job, we normalize precise decimal

values, thus we don't count the leading zeros or shift a

source operand to the left in order to reduce its

exponent. Next, the difference or total is normalized.

Even with correct operands, addition and subtraction

can provide imprecise results. This happens when the
normalized significand's fractional component isn't

zero. There isn't any rounding, though. The L or H

fraction is used to denote an approximate result if the

fraction that occurs after the decimal point indicates

that the result is not accurate.

However, it is more complicated to add and subtract

imprecise decimal floating-point values. How to define

arithmetic on 0.L and 0.H is the question. Utilizing

interval arithmetic is one option. For instance, 0.L +

0.L may equal either 0.L or 0.H, 0.L + 0.H may equal

either 0.H or 1.L, and 0.H + 0.H may equal either 1.L
or 1.H. Similarly, 0.L − 0.L, 0.H − 0.H, and 0.H − 0.L

can all be ⁎0.L, 0.H − 0.L can be either 0.H or 0.L, and

0.L − 0.H can be either −0.H or −0.L. The disadvantage

of interval arithmetic is that the result can only be

represented with two ends. Over a series of operations,

the intervals get larger and more complicated, which

makes implementation more difficult. This work offers

a straightforward method for dealing with arithmetic

on imprecise decimal floating-point Although the

arithmetic is imprecise, the results are more

trustworthy than those produced, per IEEE 754. It
makes it abundantly evident that the outcome is

imprecise and does not add complexity to the decimal

floating-point unit's hardware implementation.

The single-digit approximations of 0.L and 0.H are

used in inexact arithmetic. 0.L ≈ 0.2 and 0.H ≈ 0.7 are

the options. The reasoning behind this is that the

median for 0 to 4 is 2, while the median for 5 to 9 is 7.

There is a 0.5 difference between 0.L and 0.H.

Likewise, there is a 0.5 difference between 0.H and

1.L.

TABLE 4. Addition to 0.L and 0.H that is not

accurate.

Table 4 defines inexact addition to ⁷0.L and ⁷0.H. In

this case, 0.L + 0.H ≈ 0.9 ≈ 0.H, 0.L + 0.H ≈ 0.2 + 0.2

≈ 0.L, and 0.H + 0.H ≈ 1.4 ≈ 1.L (not 1.H). Likewise,

the definitions of (0.L − 0.L) and (0.H − 0.H) are + 0.L.

But −0.L + 0.L turns into −(0.L − 0.L) ≈ −0.L instead

of + 0.L. All the other items in Table 4 come from

consistent sources.

A shifted coefficient can be added or subtracted using

the same digit approximation. For instance, 0.L + 0.8 ≈

1.L, 0.H + 0.8 ≈ 1.5 ≈ 1.H, and 0.L + 0.3 means 0.2 +
0.3 ≈ 0.H. Similarly, 0.L − 0.8 equals −0.H, 0.H − 0.8

≈ −0.L, and 0.L − 0.3 = 0.2 − 0.3 ≈ −0.L. An procedure

for adding and subtracting two decimal values, x and y,

is shown in Figure 5. Software or hardware can be used

to implement the algorithm.

In the first stage, all of the x and y fields are extracted

using the format shown in Figure 4. A digit (.0,.2, or.7)

is then injected for the fraction F, and the exceptional

values are decoded. To prevent a negative zero

outcome, the sign bit Sx or Sy of an input x or y is

cleared if it is zero.

In step two, the biased exponents Ex and Ey are
compared, and their maximum Eu and absolute

difference d are calculated.

Step 3 generates the switched significands {Su, Cu,

Fu} and {Cv, Fv} by swapping the input operands if

Ex < Ey.

Step 4 finds the input operation Op, where ADD is 0

and SUB is 1, as well as the effective operation EOP

based on the sign bits Sx and Sy.

In the event where the first swapped operand is exact

(Fu == 0) and there is a difference in the exponents (d!=

0), Step 5 stores the guard digit for subtraction, if
necessary. To preserve the guard digit, the new

coefficient Cu is moved one decimal place to the left.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 100

Additionally decremented are the maximum exponent

Eu and the exponent difference d.

Furthermore, Step 5 moves the significand {Cv, Fv} to

the right in accordance with the exponent difference d

to get {Cw, Fw, Inx}. By doing this, the significands
are aligned to share one exponent, Eu. If any fraction

digit is pushed out or deleted, the Inx (inexact) flag is

raised.

Step 6 processes the aligned significands {Cu, Fu} and

{Cw, Fw} by adding or subtracting them using BCD.

It computes the magnitude of the result significand

{Carry, Csum, Fsum} using a BCD adder, converts

subtraction into addition to the BCD (10's)

complement, then computes LT to determine whether

{Cu, Fu} is smaller than {Cw, Fw}. This step computes

its BCD counterpart in order to post-correct the

magnitude of the result {Cr, Fr} if LT == 1 for
subtraction. This is basically required for the

implementation of hardware. Nevertheless, the Binary

Integer Decimal (BID) encoding, which utilizes the

binary hardware to calculate the total or difference,

may be used in software implementation. In Step 6, the

outcome sign Sr = Su ∧ LT is also computed,

complementing the sign bit Su if LT.

In step 7, the common exponent Eu is adjusted and the

result significand {Cr, Fr} obtained in step 6 is

normalized. The exponent Eu is lowered and the result
significand {Cr, Fr} is shifted-left in accordance with

the count LZ of leading zeros in Cr if it is accurate and

contains leading zero digits. To provide a distinctive

depiction of the outcome, this is required. In the event

that the result contains an additional Carry digit, the

exponent Eu is increased and {Carry, Cr, Fr} is moved

one BCD digit to the right. The output {En, Cn, Fn} is

normalized after step 7. En is lowered to 0 if the

outcome is precisely zero.

Note that the seventh normalization step is adaptive

and may identify precise and imprecise results. It

differs from significance arithmetic, which does not
distinguish between the two, in this way. The lack of

rounding options and rounding steps makes

implementation easier.

Step 8 identifies overflow and underflow, processes the

exceptional inputs NaN, OVF, and UNF, and generates

an extraordinary output.

In step nine, the final normalized result is encoded and

packed. For instance, let us add two precise DFP32

input operands: x = −6254763 × 10−5 and y =

−9877012 × 10−4. Ex < Ex, hence the operands in the

input must be switched. {Cv, Fv} = {6254763, 0}, {Cu,
Fu} = {9877012, 0}, and the sign Su = Sy = 1. The

effective operation EOP = 0, which is addition, has a

maximum exponent of Eu = −4 + bias. {Cv, Fv} needs

to be shifted one BCD digit to the right in order to

become {Cw, Fw} = {0625476, 3} and Inx = 1 due to

the difference in exponents. The result of adding the

significands is {Carry, Csum, Fsum} = {1, 0502488,

3}. Sr = Su = 1 is the outcome sign. The exponent is

increased to En = Eu + 1 = −3 + bias and the significand

is normalized to {Cn, Fn} = {1050248, 8} due to the

Carry. R = −1050248.H × 10−3, the approximate

result, is encoded in accordance with Table 2 and

Figure 4.

Now remove x = +1000234 × 10−1 and y = +9876543

× 10−2 from each other. Since {Cv, Fv} = {9876540,
0} and {Cu, Fu} = {1000234, 0}, Ex > Ey. Subtraction

is represented by the sign Su = Sx = 0, the exponent Eu

= −1 + bias, and the EOP = 1. The exponent Eu is

decremented to become Eu = −2 + bias, the exponent

difference is decremented to become d = 0, and the Cu

coefficient is shifted-left one decimal digit to become

Cu = 10002340 in order to preserve the guard digit.

This is only applied to subtraction when there is an

exponent discrepancy and the precise number is the one

with the greater exponent. The two significands {Cw,

Fw, Inx} = {9876543, 0, 0} are already aligned. After

that, subtraction is changed to addition to the
complement of ten, and {Ct, Ft} = {90123457, 0} is the

result. In order to extend the coefficient and acquire the

correct sign of the result, the leftmost digit, 9, is entered

into Ct. {Carry, Csum, Fsum} = {10002340, 0} +

{90123457, 0} = {0, 0125797, 0} is the result of adding

the significands. Zero is the carry digit. It shows that

(LT = 0) the outcome is positive. The result would have

been negative (LT = 1) if the Carry digit had been 9,

necessitating the post-correction of the result

significand using the 10's complement of the {Csum,

Fsum}. As the fraction is precise and the computed
Csum has a leading zero, it is shifted-left and

normalized to become {Cn, Fn} = {1257970, 0}. After

decrementing the exponent, the answer is R =

+1257970 × 10−3.

D. DECIMAL COMPARISON

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 101

With the exception of NaN, all floating-point numbers

are sorted according to IEEE 754. There are four

mutually incompatible relations given two floating-

point numbers: equality (EQ), less than (LT), greater

than (GT), or unordered (UN). Even if two rounded
numbers reflect distinct real numbers, they can

nevertheless be equal.

Equality has two connotations in my work. It may be

precise or imprecise. If two finite decimal values, x and

y, are accurate and have the same binary encoding due

to normalization with a distinct representation, then

they are equal (EQ). Should x and y be equal, then the

difference between them (x - y) should be 0.

Conversely, two inexact decimal values, or an exact

with an inexact decimal value, can be compared using

inexact or approximation equality (AE).

FIGURE 6. comparing x and y, two decimal values.

An algorithm for comparing two decimal values, x and

y, is shown in Figure 6. The relations equality (EQ),

approximate equality (AE), less than (LT), larger than

(GT), and unordered (UN) are the five that are mutually

incompatible. Strict ordering applies to exact decimal

floats. −OVF < −x < −UNF < 0 < +UNF < +x < +OVF

holds for each positive precise decimal value x. When

two finite decimal integers x and y have the same sign

and at least one of them is imprecise, their aligned

significands are nearly identical to one decimal place:
x ≈ y ≈ C.L × 10q, or x ≈ y ≈ C.H × 10q. C × 10q,

however, < C.L × 10q < C.H × 10q. Exact zero is

smaller than inexact zero in a similar manner.

Consider the case where x = 314.y = 31415 and L ×

10−2.If there are two estimates of π, H × 10−4, with

distinct exponents, then x and y have to line up. With a

smaller exponent, y's significand is pushed to the right,

becoming y = 31415.H × 10−4 ≈ 314.L × 10−2, which

represents x and y's approaching equivalence.

Similarly, z = 314.1 × 10−2 ≈ 314 if z = 3141000 ×

10−6 is an exact decimal value.Approximately, x
equals L × 10−2. But z equals 31410.y = 31415 is less

than 0×10−4.H × 10−4. This illustration demonstrates

that while perfect equality is transitive, approximate

equality is not. Since NaN values are unordered, no

decimal number x can be compared to them. In the

same way, two OVF (or UNF) values with the same
sign cannot be sorted. Nevertheless, there is a finite

decimal number x that determines the order of the UNF

and OVF values.

The Boolean functions isUNF, isOVF, isNaN, isExact,

isZero, and isInexactZero can also be used to determine

the value of a decimal number. For instance, if the

operand x is exact, the function isExact(x) returns true.

Specifically, UNF, OVF, and NaN are imprecise.

The == operator is widely used in computer languages

to test equality. An operator to test approximate

equality does not exist. In my work, approximate

equality is tested using the Boolean function AE(x, y),
whereas precise equality is tested using the statement

(x == y).

DECIMAL MULTIPLICATION

Decimal multiplication does not require the

significands to line up when the exponents are

different, in contrast to addition and subtraction. It's

easy to multiply two accurate decimal values. The

exponents are added and the decimal coefficients are

multiplied. Next, the coefficient of result is normalized.

The outcome becomes imprecise if one of the numbers
that has been pushed out is not zero. Whether the

fraction is 0.L or 0.H is shown by the final shifted-out

digit.

It is more complex to multiply two inexact decimal

numbers (or an exact number multiplied by an inexact

decimal number) because multiplying an integer

coefficient by 0.L or 0.H increases the mistake. To

approach 0.L and 0.H, digit injection is employed,

much like in addition and subtraction. If alternative

approximations of 0.L and 0.H are employed, different

outcomes are obtained, as seen in

The coefficients of 987.L × 10−3 and 6543.H × 10+2

in the example above contain three and four significant

digits, respectively. The product coefficient, with
various approximations of 0.L and 0.H, reaches more

than seven digits. The product's remaining numbers are

incorrect and ought to be thrown away, but the three

most important ones are relevant. As a result, the

exponent has to be increased and the product

coefficient needs to be moved to the right. Generally

speaking, the product coefficient should only have r =

min(m, n) digits given two decimal values, x and y,

having coefficients with m and n significant digits. The

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 102

remaining numbers ought to be changed because they

are useless.

An technique for multiplying two decimal values, x and

y, is shown in Figure 7. This algorithm can be

implemented in hardware or software. The first step
extracts each of the x and y fields. In Step 2, Cu and Cv

are created by injecting Fx and Fy into Cx and Cy. In

order to assess the precision of the outcome, it further

counts the maximum leading zeros (LZ) in the

coefficients Cx and Cy when an input is imprecise. In

Step 3, the product sign Sr and the biased exponent Ep

of Cp = Cu × Cv are calculated. The product Cp is

computed in step 4. Step 5 is the computation of LZp,

or the number of leading zeros in Cp. Additionally, it

moves the product Cp to the right in order to get a result

coefficient Cr that is limited to the fewest significant

digits in Cx and Cy. As a result, there is an inexact flag
(Inx) that shows if every shifted-out digit is non-zero,

together with a shifted significand ({Cr, Fr}). Step 6

manages extraordinary inputs and generates

extraordinary outcomes. The result R is packed and

encoded in step 7. Assuming x = -0017652.y =

+0145678 and H × 10−2.Cu = {0017652, 7} and Cv =

{0145678, 2} for L × 10−3. The leading zero maximum

is LZ = 2. The exponent of the result is Ep = −7+ bias,

the product is Cp = 0,000,257,161,356,114, and the

result sign is Sr = 1 (negative). LZp = 4 is the number

of leading zeros in Cp, while SA = 7 is the shift amount.
{Cr, Fr, Inx} = {0025716, 1, 1} is the result of shifting

Cp seven digits to the right. The exponent is then

increased to become Er = 0+ bias. Finally, we get R =

-0025716.L × 100.

FIGURE 7. multiplying x and y, two decimal

integers.

F. DECIMAL DIVISION

The significands of two finite decimal floating-point

values, x and y, are divided by their respective

significands, and the exponents are then subtracted.

Next, the outcome is normalized to the necessary level

of accuracy. The result coefficient should be limited to
r = min(m, n) significant digits, just like in

multiplication, where m and n represent the number of

significant digits in Cx and Cy. After injecting Fy, the

dividend becomes {Cx, Fx, 0... 0}, while the divisor

becomes {Cy, Fy}. Fx is followed by n + 1 decimal

zeros. A quotient with either (m + 1) or (m + 2) digits

is obtained by dividing an integer with (m + n + 2)

decimal digits by a divisor with (n + 1) digits.

The division of two imprecise decimal integers using

various estimates of 0.L and 0.H is demonstrated in the

example below:

FIGURE 8. dividing x and y, two decimal integers.

An procedure for splitting two decimal values, x and y,

is shown in Figure 8. Step 2 creates a coefficient Cu

with (2p + 2) decimal digits by injecting Fx (0, 2, or 7)
and (p + 1) decimal zeros into Cx, where p is the

precision. Fy (0, 2, or 7) is also injected into Cy to

create a coefficient Cv with (p + 1) decimal digits. In

addition, the maximum number of leading zeros in

coefficients Cx and Cy is counted in this step: LZ =

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 103

max(LZx, LZy). This is required to ascertain the

accuracy of the outcome when an input operand is

imprecise.

The sign of the result Sr=Sx ∧ Sy is calculated in step

three, where ∧ denotes the XOR operator.

Additionally, it calculates the quotient's biased

exponent: Ex − Ey − p − 1 + Bias = Equation.

The decimal coefficients are divided in step 4: Cu/Cv

equals Cq. In this phase, a quotient Cq with a maximum

of 2p + 2 decimal digits and an Inx flag indicating an

imprecise division (Inx might be 0 or 1) are produced.

In Step 5, the number of leading zeros in Cq is

calculated, or LZq. The shift amount is calculated using

the precision p, LZ, and LZq as follows: SA = (p + 2 +

LZ − LZq). Er = Eq + SA is the biased exponent that is
computed, and the Cq quotient is shifted to the right.

The resultant output consists of a sticky inexact flag Inx

that specifies whether every shifted-out digit is

nonzero, and a shifted significand {Cr, Fr} =

BCD_SHR (Cq, SA). There are p decimal digits in the

result coefficient Cr. Fr, the resultant fraction, is one

decimal place. Step 6 identifies overflow and

underflow and deals with unusual inputs.

In step seven, the result R is encoded and packed along

with the significand {Cr, Fr}, exponent Er, and sign bit

Sr.

For instance, think about dividing x = -6257652.y ×
10−2 = + 9815678= H.L × 10−5. Next, Cv = {9815678,

2} and Cu = {6257652, 7, 00000000}. There are no

leading zeros in Cx and Cy, as shown by LZx = LZy =

0 and LZ = 0. With Sr=1, Eq = −2 + 5−8=−5+Bias. Inx

= 1 and Cq = 0000000063751608. LZq = 8, Er = −4 +

Bias, and SA = 7 + 2 + 0 − 8 = 1 are the shift amounts.

After that, Cq is moved to the right to create {Cr, Fr} =

{6375160, 8}. The calculated outcome is R = -

63752060.H × 10−4.

SIMULATION RESULTS:

CONCLUSION

The input domain of floating-point expressions can

have a significant impact on them. In order to magnify

the inaccuracy and highlight the flaws in the IEEE 754
standard, the inputs listed in Table 5 were chosen. The

correct result, calculated with 128-bit decimal

arithmetic, is displayed in the first column. Afterwards,

the integer coefficients are decreased to a maximum of

16 decimal places, which corresponds to the 64-bit

binary and decimal floating-point values' precision.

This results in an adjustment of the exponent. If the

genuine result has more than 16 decimal places, a

fraction is utilized.

The second and third columns display the rounded

float64 and decimal64 values together with their

corresponding mistakes. The final column displays the
DFP64 inexact result. The approximations for the .L

and .H are 0.2 and 0.7, respectively. The calculated

result is displayed below the relative and ULP errors.

The calculations for decimal64 and float64 are rounded

to the nearest. These examples do not include the

rounding tie scenario. Conclusions can be made based

on Table 5's data. Arithmetic and floating-point

numbers in binary are often less precise than those in

decimal. This is explained by the decimal input

fractions' imprecise binary representation. The second

conclusion is that incorrect bits and digits are
propagated during calculation by the 16-digit

decimal64 coefficient and the 53-bit float64

significand. This is demonstrated by the ULP error,

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 104

which increases exponentially with the amount of

incorrect digits. This results from injecting incorrect

zero bits or digits during the normalization of

significands with leading zero bits or digits to optimize

accuracy in the IEEE 754 floating-point arithmetic
procedures. In my job, however, this is not permitted

when the outcomes or operands are not exact. It should

only be acceptable to normalize significands with

leading zero digits if the outcome is precise. The ULP

error is therefore minimized, as Table 5 for DFP64

illustrates.

The final conclusion, which is illustrated in Table 5, is

that inexact arithmetic warns users when important

digits are lost in real-time computations. If inexact

floating-point numbers have an explicit representation,

this may be easily identified by the programmer. The

IEEE 754 numbers and arithmetic operations, which
have been directly implemented in hardware and

accepted by programming languages and numeric

analytic tools for decades [42], nonetheless lack this

imprecise representation, which necessitates the real-

time identification of significant calculation mistakes

as detailed in this work.

This paper presents only a portion of the work that has

been done. Further developments include a more

thorough error analysis for imprecise computing in real

time. Work is being done on a hardware

implementation of arithmetic operations with both
accurate and inexact floating-point integers.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic,

IEEE Standard 754-2008, IEEE Computer Society,

Aug. 2008.

[2] IEEE Standard for Binary Floating-Point

Arithmetic, IEEE Standard 754-1985, The Institute of

Electrical and Electronic Engineers, New York, NY,

USA, 1985.

[3] M. F. Cowlishaw, ‘‘Decimal floating-point:

Algorism for computers,’’ in Proc. 16th IEEE Symp.
Comput. Arithmetic, Jun. 2003, pp. 104–111.

[4] D. Goldberg, ‘‘What every computer scientist

should know about floating point arithmetic,’’ ACM

Comput. Surv., vol. 23, no. 1, pp. 5–48, Mar. 1991.

[5] IEEE Standard for Floating-Point Arithmetic,

IEEE Standard 754-2019, Microprocessor Standards

Committee, Jun. 2019.

[6] M. Cowlishaw, ‘‘Densely packed decimal

encoding,’’ IEE Proc., Comput. Digit. Techn., vol. 149,

pp. 102–104, May 2002.

[7] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang,
E. Schneider, and E. Gvozdev, ‘‘A software

implementation of the IEEE 754R decimal floating-

point arithmetic using the binary encoding format,’’

IEEE Trans. Comput., vol. 58, no. 2, pp. 148–162, Feb.

2009.

[8] IBM Corporation. (2010). The DecNumber C

Library, Version 3.68. [Online]. Available:

http://speleotrove.com/decimal/decnumber.html

[9] C# Decimal (C# Reference). Accessed: Sep. 29,

2022. [Online]. Available:

https://docs.microsoft.com/en-

us/dotnet/csharp/languagereference/keywords/decimal

[10] (2020). BigDecimal, Java Platform SE 7.
[Online]. Available: https://docs.

oracle.com/javase/7/docs/api/java/math/BigDecimal.h

tml

[11] (2023). SQL Decimal and Numeric Data Types,

Microsoft Docs. [Online]. Available:

https://docs.microsoft.com/en-us/sql/t-sql/data-

types/decimaland-numeric-transact-sql

[12] E. M. Schwarz and S. R. Carlough, ‘‘Power6

decimal divide,’’ in Proc. IEEE Int. Conf. ASAP,

Montreal, QC, Canada, Jul. 2007, pp. 128–133.

[13] A. Y. Duale, M. H. Decker, H.-G. Zipperer, M.

Aharoni, and T. J. Bohizic, ‘‘Decimal floating-point in
z9: An implementation and testing perspective,’’ IBM

J. Res. Develop., vol. 51, nos. 1–2, pp. 217–227, Jan.

2007.

[14] E. M. Schwarz, J. S. Kapernick, and M. F.

Cowlishaw, ‘‘Decimal floating point support on the

IBM system z10 processor,’’ IBM J. Res. Develop.,

vol. 53, no. 1, pp. 4:1–4:10, Jan. 2009.

[15] S. Carlough, A. Collura, S. Mueller, and M.

Kroener, ‘‘The IBM zEnterprise-196 decimal floating-

point accelerator,’’ in Proc. IEEE 20th Symp. Comput.

Arithmetic, Tuebingen, Germany, Jul. 2011, pp. 139–
146.

[16] T. Yoshida, T. Maruyama, Y. Akizuki, R. Kan, N.

Kiyota, K. Ikenishi, S. Itou, T.Watahiki, and H. Okano,

‘‘Sparc64 X: Fujistsu’s new-generation 16-core

processor for unix servers,’’ IEEE Micro, vol. 33, no.

6, pp. 16–24, Nov./Dec. 2013.

[17] L. K. Wang and M. J. Schulte, ‘‘Decimal floating-

point square root using Newton–Raphson iteration,’’ in

Proc. 16th IEEE Int. Conf. ASAP, Samos, Greece, Jul.

2005, pp. 309–315.

[18] L. K. Wang and M. J. Schulte, ‘‘A decimal

floating-point divider using Newton–Raphson
iteration,’’ J. VLSI Signal Process., vol. 49, no. 1, pp.

3–18, Oct. 2007.

[19] L.-K. Wang and M. J. Schulte, ‘‘Decimal floating-

point adder and multifunction unit with injection-based

rounding,’’ in Proc. 18th IEEE Symp. Comput.

Arithmetic (ARITH), Montpellier, France, Jun. 2007,

pp. 56–68.

[20] L.-K. Wang, M. J. Schulte, J. D. Thompson, and

N. Jairam, ‘‘Hardware designs for decimal floating-

point addition and related operations,’’ IEEE Trans.

Comput., vol. 58, no. 3, pp. 322–335, Mar. 2009.
[21] L.-K. Wang and M. J. Schulte, ‘‘A decimal

floating-point adder with decoded operands and a

decimal leading-zero anticipator,’’ in Proc. 19th IEEE

Symp. Comput. Arithmetic, Jun. 2009, pp. 125–134.

[22] A. Vazquez, E. Antelo, and P. Montuschi,

‘‘Improved design of high-performance parallel

decimal multipliers,’’ IEEE Trans. Comput., vol. 59,

no. 5, pp. 679–693, May 2010.

http://www.ijesat.com/
https://docs/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 105

[23] A. Vazquez, E. Antelo, and P. Montuschi, ‘‘A new

family of high. Performance parallel decimal

multipliers,’’ in Proc. 18th IEEE Symp. Comput.

Arithmetic (ARITH), Montpellier, France, Jun. 2007,

pp. 195–204.
[24] A.Wahba and H. Fahmy, ‘‘Area efficient and fast

combined binary/decimal floating point fused multiply

add unit,’’ IEEE Trans. Comput., vol. 66, no. 2, pp.

226–239, Feb. 2017.

[25] R. E. Moore, Interval Analysis. Englewood Cliffs,

NJ, USA: Prentice-Hall, Englewood Cliffs, 1966.

[26] N. Revol, ‘‘Introduction to the IEEE 1788–2015

standard for interval arithmetic,’’ in Numerical

Software Verification, in Lecture Notes in Computer

Science, vol. 10381. New York, NY, USA: Springer,

2017, pp. 14–21.

[27] (2023). IEEE 1788-2015 Standard for Interval
Arithmetic. [Online]. Available:

https://standards.ieee.org/standard/1788-2015.html

[28] (2023). IEEE 1788.1-2017 Standard for Interval

Arithmetic. [Online]. Available:

https://standards.ieee.org/standard/1788_1-2017.html

[29] O. Heimlich, ‘‘Interval arithmetic in GNU

octave,’’ in Proc. Summer Workshop Interval Methods

(SWIM), 2016.

[30] M. Nehmeier, ‘‘Libieeep1788: A C++

implementation of the IEEE interval standard P1788,’’

in Proc. IEEE Conf. Norbert Wiener 21st Century
(CW), Jun. 2014, pp. 1–6.

[31] J. Gustafson, The End of Error: Unum Computing,

1st ed. Boca Raton, FL, USA: CRC Press, 2015.

[32] J. L. Gustafson, ‘‘A radical approach to

computation with real numbers,’’ Supercomputing

Frontiers Innov., vol. 3, no. 2, pp. 38–53, Jun. 2016.

[33] J. Gustafson and I. Yonemoto, ‘‘Beating floating

point at its own game: Posit arithmetic,’’
Supercomputing Frontiers Innov., vol. 4, no. 2, pp. 71–

86, Jun. 2017.

[34] F. de Dinechin, J. Müller, L. Forget, and Y.

Uguen, ‘‘Posits: The good, the bad and the ugly,’’ in

Proc. Conf. Next Gener. Arithmetic (CoNGA),

Singapore, Mar. 2019, pp. 1–10.

[35] FPBench Benchmarks. [Online]. Available:

https://fpbench.org/benchmarks.html

[36] J. Panchekha, A. Sanchez, and Z. Tatlock,

‘‘Automatically improving accuracy for floating point

expressions,’’ in Proc. PLDI, vol. 15, 2015, pp. 1–11.

[37] N. Damouche, M. Martel, and A. Chapoutot,
‘‘Intra-procedural optimization of the numerical

accuracy of programs,’’ in Proc. FMICS, in Lecture

Notes in Computer Science, vol. 9128. New York, NY,

USA: Springer, 2015, pp. 31–46.

[38] E. Darulova and V. Kuncak, ‘‘Sound compilation

of reals,’’ in Proc. POPL, vol. 14, Jan. 2014, pp. 235–

248.

[39] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G.

Gopalakrishnan, ‘‘Rigorous estimation of floating-

point round-off errors with symbolic Taylor

expansions,’’ in Proc. 20th Int. Symp. Formal Methods
(FM), Oslo, Norway, Jun. 2015, pp. 532–550.

http://www.ijesat.com/

