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ABSTRACT   

In floating-point division, the ratio (1 + Mx)/(1 + My) is calculated, with Mx and My denoting the input 

values' mantissas. In this work, we provide a novel approach to approximate this process with a My-dependent 

linear function of Mx. In order to minimize the approximation's Mean Relative Error Distance (MRED), the 

coefficients are computed. In order to do this, My's range is divided into N sub-intervals, and the minimization of 

MRED is expressed as a linear programming problem with optimum coefficient values found in its solution. Two 

multipliers, an adder, and a tiny lookup table are needed for the hardware implementation. Utilizing an aggressive 

coefficients quantization, the design is further optimized. As N increases, obtained MRED improves, ranging from 

1.4% to 0.33%. Results of implementation in a 28nm CMOS technology demonstrate that the suggested design 

beats the current best, providing the optimal balance between accuracy and hardware complexity. Results show 
excellent performance for two image processing applications: JPEG compression and change detection, with 

PSNR values above 50dB and SSIM values extremely near to 1. 

 

INTRODUCTION 

The design of digital signal processing (DSP) 

algorithms, which are widely used in everyday 

electronic applications, depends heavily on 

ARITMETIC circuits. The emergence of artificial 

intelligence and huge data processing necessitates the 

use of mathematical operations extensively for tasks 

like machine learning, categorization, and recognition 
[1]. The Internet of Things (IoT) paradigm has led to 

the requirement for huge amounts of data to be 

processed, stored, and sent. This has made the design 

of electrical devices with low-power characteristics 

difficult [2], [3]. 

The adoption of appropriate design solutions has 

become a priority in order to fulfill goal activities with 

acceptable power consumption since adders, 

multipliers, and divisions are energy-consuming 

circuits. 

In this case, approximate computing (AC) is a useful 
technique that can save space and power while 

allowing for computation mistakes [4], [5]. 

Furthermore, the AC technique is very effective due to 

the limitations of human senses and the error-tolerant 

character of many real applications (e.g., image and 

audio processing, adaptive filtering) [6, 7, 8].  

Numerous studies have focused on the design of fixed-

point approximation multipliers and adders, offering 

numerous methods that can maximize both area and 

power. Papers [9], [10], and [11], for example, present 

a decomposition technique that splits the adder into 

atomic fast sub-adders, each of which processes a 
fraction of the input signals. Meanwhiple, papers [12], 

[13], and [14] make use of an approximation carry-skip 

architecture capable of reducing the critical path delay. 

The speculative approach is used to create parallel-

prefix adders in [15], while approximation full-adders 

at the gate and transistor levels are shown in [16], [17].  

Reducing the complexity of the partial product matrix 

(PPM) compression step usually results in significant 

power savings when multipliers are included. Once 

more, several methods have been suggested, ranging 

from truncation [23], [24] or input segmentation [25], 

[26], [27], [28], [29], to approximate compression [18], 

[19], [20], [21], and [22]. Appropriate correction 

methods are also discussed for accuracy recovery (see 
[20], [23], [26] for references).  

In contrast to multipliers and adders, dividers have not 

gotten as much attention in writing. Nonetheless, 

hardware dividers are preferable over software 

implementation of the division in the design of a 

number of commercial microprocessors and devices 

[30], [31], and [32].  

Iterative methods based on subtractions and 

multiplications are typically used in the division of two 

fixed-point values to compute the quotient from an 

initial estimate [33], [34], [35], [36], [37], [38].  
Here, the design's main considerations are latency and 

power use. Sweeney-Robertson-Tocher (SRT) 

algorithms attempt to minimize the number of 

repetitions by utilizing redundant quotient 

representations and high-radix coding [38]. Additional 

methods to boost power include estimating the 

subtractor [39], using signal segmentation [40], or both 

[41]. An other method for computing the quotient with 

less energy and delay is to realize non-iterative 

dividers. Since it enables the division to be expressed 

as two-operand subtraction followed by a shift, the 

logarithmic number system (LNS) is a useful tool in 
this situation [42]. While [44] uses a linear 

approximation for the expression 1/y, [43] recodes the 

divisor y to only need a multiplication and a left-shift. 

While [45] proposes LNS with mean-error correction, 

[46] comes up with a rounding-based method to make 

the divider simpler. Large dynamic range and excellent 

precision are provided by floating-point arithmetic, 
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which represents integers with sign, exponent, and 

mantissa [47]. The design of floating-point dividers is 

crucial for several real-world DSP applications because 

of these features.  

Sign and exponent calculation in a hardware divider 
can be easily implemented with just an XOR and a 

subtraction. However, the mantissa calculation is far 

more intricate and calls for a fixed-point division (1 + 

Mx)/(1 + My), where Mx and My represent the 

dividend and divisor mantissas, respectively. In [48], a 

two-step approximation method using shift and add 

operations is presented to do the mantissa division. In 

this instance, the tradeoff between hardware 

complexity and precision can be adjusted based on the 

shift and addition counts that are specified during the 

design phase.  

A piecewise constant approximation is utilized in [49]. 
Similarly to [48], varying degrees of precision can be 

attained by appropriately selecting the number of 

ranges across which the constant approximation is 

used. In [50], a variable correction term that is kept in 

a LUT is used to regain accuracy after the mantissa 

division is estimated using subtractions. Since it affects 

both the accuracy and the size of the LUT, the 

correction term's bit count in this instance is a crucial 

design element. The division is reexamined in [51] as 

a two-variable function, and the surface of the quotient 

is estimated using best-fitting planes.  
In this study, we suggest a novel minimal error, non-

iterative approximation floating-point divider, which 

we will refer to as FPDME from here on. The precise 

operation (1 + Mx)/(1 + My) is the first step in our 

method, and we represent the division as a linear 

function of the mantissa Mx, with coefficients based on 

My. 

The divider's accuracy is impacted by the coefficient 

selection. Our method finds the coefficients with the 

goal of minimizing the approximation's Mean Relative 

Error Distance (MRED). In order to do this, the range 

of My is divided into N sub-intervals, and the 
minimization of MRED is framed as a linear 

programming problem in each sub-interval, the 

solution of which yields the ideal values for the 

coefficients. Although we took MRED reduction into 

consideration, it's important to remember that our 

suggested strategy is easily adaptable to target other 

error metrics, such mean absolute error, for example.  

To further improve the design, Mantissa truncation and 

coefficient quantization are also utilized. A lookup 

table (LUT) is all that is needed for hardware in the 

proposed division to store the coefficients. Two 
multipliers and an adder are combined into a single 

carry-save arithmetic structure. A proper selection of N 

and parameter quantization enables the trade-off 

between hardware complexity and accuracy to be 

adjusted during the design process.  

Achieving MRED similar to or better than previously 

suggested approximation floating-point dividers is 

made possible by the proposed FPDME. In terms of 

power-delay product (PDP) and area-delay product 

(ADP), synthesis findings in TSMC 28nm CMOS 

technology also demonstrate an increase in hardware 

performances above the state-of-the-art. We showcase 

the outcomes of two image processing uses cases: 

JPEG compression and change detection. The two 
applications highlight the benefits of the suggested 

method even further, demonstrating competitive results 

in terms of mean structural similarity index (SSIM) and 

peak signal-to-noise ratio (PSNR). 

 

LITERATURE SURVEY 

Internet of Things (IoT): An overview, design 

components, and security concerns  

The Internet of Things is a globally developing 

technology that facilitates the internet-based 

networking of sensors, automobiles, healthcare 

facilities, businesses, and consumers. Smart Homes, 
Smart Cities, Smart Agriculture, and Smart World are 

all made possible by this kind of construction. The vast 

number of devices, connection layer technologies, and 

services that make up the Internet of Things make its 

architecture very complicated. However, the most 

crucial factor in IoT is security. With the aid of Smart 

World, we provide an overview of the IoT architecture 

in this article. In the second section of this article, we 

address IoT security concerns and then IoT security 

solutions. Ultimately, the difficulties covered in the 

report may serve as avenues for future research in IoT 
security. 

 

An Estimated Down-sampling Technique for 

Intelligent Systems with Power Limitations 

Artificial intelligence algorithms are increasingly 

being deployed on bespoke hardware supports in 

current power-constrained applications, such as the 

majority of Internet-of-things applications. It is 

imperative to minimize power consumption in various 

working situations, even if it means sacrificing 

computational precision. In order to decrease the total 

amount of convolution computations, we provide a 
unique prediction technique in this study that identifies 

possible dominating features in convolutional layers 

and then down-samples those layers. Utilizing this 

approximation down-sampling technique, a unique 

hardware architecture for Convolutional Neural 

Network (CNN) model inference has been designed. 

After using the suggested method on a number of 

benchmark CNN models, we were able to save up to 

70% of energy overall while maintaining accuracy 

levels below 3% when compared to baseline designs. 

Experiments conducted show that the suggested 
architecture implemented on a Xilinx Z-7045 device 

and on an STM 28nm process technology dissipates 

only 680 and 21.9 mJ/frame, respectively, when 

adopted to infer the Visual Geometry Group-16 

(VGG16) network model. In all scenarios, the 

innovative design outperforms a number of cutting-

edge rivals in terms of the energy-accuracy drop 

product. 
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An emerging paradigm for energy-efficient 

architecture is approximate computing. 

Recently, approximate computing has gained 

popularity as a viable method for designing digital 

systems that use less energy. Many systems and 
applications must be able to accept a certain amount of 

quality or optimality loss in the calculated output in 

order for approximate computing to work. 

Approximate computing approaches provide much 

higher energy economy by reducing the requirement 

for fully exact or entirely predictable computations. 

The design of approximation arithmetic blocks, 

relevant error and quality measurements, and 

algorithm-level approaches for approximate computing 

are among the latest advancements in the field that are 

reviewed in this work. 

 

A New Low-Power Module-Signal Approach for the 

DLMS Adaptive Filter Featuring Low Steady-State 

Error 

This work proposes a unique implementation of the 

Delayed LMS (DLMS) filter that can preserve regime 

performances while lowering power dissipation. The 

method is based on the fact that when the circuit is near 

the convergence point, the error signal has a tiny value 

and oscillates around zero. Consequently, there is a lot 

of switching activity in the feedback section's 

multipliers due to the error signal's most significant bits 
constantly flipping between positive and negative 

values. This research suggests using a sign-modulus 

representation of the error signal in order to 

significantly lower the filter's feedback path switching 

activity. Further approximation methods are also 

developed to minimize power dissipation even more. 

The suggested filter is the only one that can approach 

the MSE of the precise implementation with a notable 

reduction in power consumption, according to 

comparisons with the state-of-the-art. We have 

implemented a test-chip on TSMC 28nm CMOS 

technology to confirm our methodology through 
experimentation. According to the testing results, 

depending on how the filter is exactly implemented, 

power consumption may be reduced by up to 45.4%. 

 

Precision-adjustable multiplier for approximative 

mathematical structures 

In application scenarios where rigorous constraints are 

eased, approximation might improve performance or 

lower power consumption using an erroneous or 

simpler circuit. In applications pertaining to human 

senses, approximation arithmetic can yield adequate 
outcomes instead of than absolutely accurate results. 

An approximate design makes use of a trade-off 

between computational accuracy and power and 

performance. However, the level of precision needed 

varies depending on the application, and in certain 

cases, 100% precise findings are still necessary. Our 

research presents an accuracy-configurable 

approximation (ACA) adder that allows the accuracy 

of its outputs to be adjusted in real time. The ACA 

adder may function adaptively in both approximate 

(inaccurate) mode and accurate mode due to its 

configurability. Compared to traditional adder designs, 

the suggested adder can achieve a considerable 

throughput gain and total power reduction. It may be 
applied to applications that require accurate 

configuration and enhances the feasible trade-off 

between power/performance and quality. 

 

PROPOSED METHODOLOGY 

BLOCK DIAGRAM 

 
Block diagram of the proposed FPDME 

 

In this study, we suggest a novel minimal error, non-

iterative approximation floating-point divider, which 

we will refer to as FPDME from here on. Starting with 

the precise operation (1 + Mx)/(1 + My), we formulate 

our method as a linear function of the mantissa Mx, 

with coefficients that depend on My.  

The divider's accuracy is impacted by the coefficient 
selection. Our method finds the coefficients with the 

goal of minimizing the approximation's Mean Relative 

Error Distance (MRED).  

 

MODULE EXPLANATION: 

FLOATING-POINT DIVISION 

The following is the representation of a real number A 

in floating-point notation: 

 
where bias is a constant term used to shift the exponent, 

and S, E, and M are the sign, exponent, and mantissa 

of A, respectively. The bit-width of E and M as well as 

the bias value vary depending on the required accuracy, 

with one bit being used for the sign. The single 

precision IEEE-754 format is displayed in Fig. 1 [47]. 

32 bits are needed to represent A, with unsigned values 

stated on 8 and 23 bits (highlighted in blue and green, 
respectively) for E and M. While the mantissa M 

fluctuates throughout the range [0, 1], the exponent E 

is located within [0, 255]. Furthermore, bias is adjusted 

to 127 to move (1)'s total exponent inside the interval 

[−127, 128]. 
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Although the following assumes single precision 

floating-point values for the divider inputs, the 

suggested method is universal and works as well with 

other floating-point formats, such as IEEE half-

precision or BFloat16. Allow us to examine the two 
operands in order to demonstrate the floating-point 

division: 

 
sign, exponent, and mantissa of the dividend, X, are 

represented by Sx, Ex, and Mx, while sign, exponent, 

and mantissa of the divisor, Y, are represented by Sy, 

Ey, and My. 

The symbol for the divide Z = X/Y is comparable: 

 
where values in [0, 1] are assumed for the 

normalization of the mantissa Mz. It's also important to 

remember that the number (1 + Mz) falls between [1, 

2). While the modulus of Z may be expressed as 

follows, the sign Sz of the division is just the XOR of 
the operands' sign bit. 

 
Now let's look at the expression (1 + Mx)/(1 + My). Its 

maximum value is (slightly) less than 2 when My and 

Mx are extremely near to zero and one, respectively. In 

the other scenario, a minimum value that is (slightly) 

more than 0.5 is attained. 

Consequently, the following disparity is true: 

 
It's also important to remember that when Mx > My is 

true, the factor (1 + Mx)/(1 + My) is greater than 1. 

Next, the following two scenarios are taken into 

consideration for the computation of Ez and Mz, 

beginning with (4) and (5): 

 
In fact, when Mx > My, the quotient (1 + Mx)/(1 + My) 

naturally occurs in the range [1, 2] (see (6)). On the 

other hand, when Mx < My, (1 + Mx)/(1 + My) is in 

the interval [0.5, 1). As a result, the normalizing 

method requires that you double (1 + Mx)/(1 + My) and 

deduct a "1" from the exponent for compensation in 

order to obtain (1 + Mz) in [1, 2], as seen in (7). 
Regardless, in all scenarios, the division of (1 + Mx)/(1 

+ My) is necessary for the mantissa computation. 

 

PROPOSED FLOATING-POINT DIVIDER 

We go over the method for approximating the division 

in this section. First, we represent the division as a 

linear function of the mantissa Mx, with coefficients 

that are dependent on My, dividing (1 + Mx)/(1 + My). 

Subsequently, we solve a minimization issue stated as 

a linear constraint programming problem to acquire the 

coefficient values that optimize the MRED. To further 

improve the design, we aggressively quantize the 
coefficients in a future phase. We recast the 

optimization issue as an integer linear programming 

problem in order to achieve this goal. 

 

A. Approximation of Division as a Linear Function 

of Mx 

To demonstrate the suggested method, let us first 

define the approximate ratio as φ(Mx, My) and the 

precise one as f (Mx, My) = (1 + Mx)/(1 + My). The 

difference between f (Mx, My) and φ(Mx, My) is the 

relative error distance (RED).   

 
The average value of RED is represented by the 

MRED. 

Additionally, let's rewrite the mantissa division as 

follows: 

 
f (Mx, My) is linear with respect to Mx and has 

coefficients that depend on My, as shown in (9). This 

discovery allows us to write f (Mx, My) as follows: 

 
To get the error equal to zero, we need choose g(My) = 

c(My) = 1/(1 + My)) from (9)–(10). However, to get 

the end result, c(My) has to be multiplied by Mx. Thus, 

it makes logical to employ two distinct approximations 

for g(My) and c(My), with a harsher approximation for 

c(My), from the standpoint of hardware 

implementation.  

We divide the range of My into N-subintervals, each 

with a width of 1/N, keeping the aforementioned in 

mind. As seen in Fig. 2, this translates to dividing the 

mantissas' plane Mx − My into N horizontal stripes. 
Keep in mind that we select N to be a power of two in 

order to make it simple to identify each stripe using the 

most significant bits (MSBs) of My, h = log2(N). 

Whereas My < k/N in the k-th stripe (k − 1)/N While 

g(My) is estimated using a linear function of My as 

follows, c(My) is approximated using a constant: 

c(My) = ck.  

g(My) = ak + bk My. 

With the aforementioned presumptions, the k-th stipe's 

equation (10) becomes: 

 
In order to estimate the quotient, this equation requires 

a total of 3჻N coefficients, ak, bk, and ck. Therefore, 

our task is to determine the coefficients that minimize 

the MRED. 
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B. The Acquisition of the Ideal Coefficients 

In Fig. 2, we highlight the red dots that represent nx × 

ny evenly spaced locations, which we discretize to 

acquire the values of the coefficients ak, bk, and ck. 

This is where the relative error distance is calculated. 
Next, the relative error distance REDi,j in a generic 

point of coordinates (Mxi, Myj) is written as follows: 

 
utilizing: j = 0, 1,... ny − 1 and i = 0, 1,... nx − 1. We 

might formulate our issue as follows: In order to 

minimize              the following objective function, 

determine the coefficients ak, bk, and ck in each stripe: 

 
It is important to note that, with the exception of a 

scaling factor, the summation in (13) corresponds to 

the MRED in the k-th stripe. As a result, reducing (13) 

in every stripe enables lowering the divider's overall 

MRED. It is important to note that, in addition to 

MRED, other error metrics, such as mean absolute 

error, might also be regarded as cost functions in 

equations (12) and (13). 

By adding additional auxiliary variables uij, the 
optimization issue (13) may be further phrased as a 

linear programming problem so that: 

 
Then, to make (13) more succinct, posing fij = f (Mxi, 

Myj), it may be rewritten as follows: 

 
where after some algebra, the restrictions are obtained 

from (14). The issue (15) resembles a typical linear 

programming problem, which looks like this:  

 
When there are two restrictions and the unknown 

vector x is made up of three + nx ・ ny components (ak, 

bk, ck, and uij for i = 0, 1,... nx − 1 and j = 0, 1,... ny − 1).  
The contour plot of RED is displayed in Figures 3a, 3b, 

and 3c for N = 4, 8, and 16, respectively. MATLAB's 

linprog function was used to solve the minimization 

issue. We will assume nx = 100 and ny = 20 in the 

following. Large areas of the mantissas' plane can have 

low RED values when N is increased, as the blue parts 

that grow from N = 4 to N = 16 illustrate. As a result, 

raising the N value also enhances the MRED. 

Furthermore, Fig. 3 advises appropriately selecting N 

to satisfy the required accuracy limitations (depending, 

for example, on the chosen floating-point format).  

 

C. Coefficient Quantization 

The coefficients ak, bk, and ck must have quantized 

values in order to implement the mantissa division in 

hardware. We rewrite ak, bk, and ck as follows in order 

to achieve this: 

 
where aint,k, bint,k, cint,k are integer variables that 

need to be determined, and LSBa, LSBb, and LSBc are 

the weights of the less-significant bits (LSB) of the 

coefficients (specified at design time). It is noteworthy 

that in order to achieve the desired precision, the 
selection of LSBa, LSBb, and LSBc can be 

appropriately adjusted based on the chosen floating-

point format. We acquire a mixed-integer linear 

programming issue by replacing ak, bk, and ck in (15) 

with a′k, b′k, and c′k. This may be addressed in 

MATLAB by using the intlinprog tool, which returns 

the values of quantized coefficients that minimize the 

MRED. 

The behavior of MRED with quantized coefficients is 

seen in Figure 4. As N varies from 4 to 32, the MRED 

in the picture is a function of LSBc, with LSBa set at 

2−7 and LSBb equal to 2−1 or 2−3. Additionally, we 
present the inaccuracy that results from using actual, 

non-quantized coefficients (black dashed line). The 

MRED is calculated in these simulations by taking into 

account 106 divisions, which are carried out using 106 

pairings of uniformly distributed integers stated on 23 

bits. As can be seen in Fig. 4, in every case the MRED 

shows an impressive dependency on LSBc. As 

anticipated, a drop in LSBc values results in better 

resolutions of coefficients c′k and an increase in 

accuracy. 

However, as Figs. 4c and 4d demonstrate, a decreased 
dependency on LSBb is seen, especially for N ≥16.  

In actuality, the MRED obtained in this instance for 

LSBb = 2−3 is quite similar to that obtained for LSBb 

= 2−1. A suitable selection of LSBa also results in 

acceptable performances and is less demanding on the 

design. In this instance, we discovered that LSBa = 2−7 

makes sense to reach a respectable MRED for small 

LSBc values. Finding LSBc as 2−3 for N = 4 and in the 

range 2−4-2−7 for N ≥ 8 yields an acceptable 

inaccuracy, according to the findings shown in Fig. 4. 

Selecting LSBb = 2−1 is thus a sensible choice. We 

concentrate on the following test scenarios in light of 
these insights in an effort to obtain reasonable 

hardware complexity and accurate results:  

(i) N = 4; LSBa = 2−7, LSBb = 2−1, LSBc = 2−3   
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(ii) N = 8, LSBa = 2−7, LSBb = 2−1, LSBc = 2−4  

(iii) N = 16, LSBa = 2−7, LSBb = 2−1, LSBc = 2−4  

(iv) N = 32, LSBa = 2−7, LSBb = 2−1, LSBc = 2−5. 

The values obtained for the coefficients aint,k, bint,k, 

and cint,k in the four examples under consideration are 
gathered in Tables I–IV. 

TABLE I 

  
 

TABLE II 

  
TABLE III 

  
TABLE IV 

 

PROPOSED FLOATING-POINT DIVIDER 

Fig. 5a shows the hardware implementation of the 

suggested FPDME. While the exponent Ez is 

calculated using a multi-operand adder, the sign Sz is 

obtained by XORing Sx and Sy. The ApprxDiv block 

is where the approximation mantissa division is carried 

out. The quantization coefficients are stored in the h 

MSBs of the My Index Lookup Table (LUT), and the 

quotient is calculated by two multipliers and an adder. 
Since bint,k is always negative, we save its absolute 

value |bint,k| in the LUT to reduce the size of the LUT. 

Nevertheless, as Tables I–IV demonstrate, the LUTs 

are quite tiny and don't require special ROM. They 

were synthesized with a standard-cell library in mind 

and specified in Verilog HDL. 

By multiplying cint,k and bint,k with the mantissas and 

adding aint,k to the products, one may estimate the 

quotient φk. The signals Mxnt and Mynt are obtained 

by truncating the nt LSBs of mantissas in order to 

simplify multipliers. We emphasize that nt can be 
carefully selected depending on the necessary accuracy 

and the floating-point format being utilized.  

To further optimize hardware, the multipliers and adder 

are arranged in a fused carry-save arithmetic structure 

(referred to as CSAS in the picture). 

 
 

The CSAS in the example N = 8, LSBa = 2−7, LSBb = 

2−1, LSBc = 2−4, and nt = 16 is depicted in detail in 

the figure. In this case, Mxnt and Mynt are stated on 23 

− nt = 7 bits, whereas aint,k, |bint,k|, and cint,k are 

expressed on 8, 2, and 4 bits, respectively. Then, Mxnt 

・ cint,k is responsible for the first four blue rows, 

whereas Mynt ・ |bint,k| is responsible for the 

remaining two orange rows. The word "aint,k" is 

shown in green. Furthermore, the products Mxnt ・ 

cint,k and Mynt ・ bint,k contain LSBs of weight 2−11 

and 2−8, respectively, with Mxnt, Mynt having an LSB 

of weight 2−(23−nt) = 2−7. 

It's also important to note that the CSAS computes the 
quotient's 12 bits rather than its full 24 bits, which 
enables the normalization process's hardware 
complexity to be reduced (explained in the 
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following). In general, the number of bits calculated 
by CSAS is nφ = 24 − nt + |log2(LSBc)|. 
In order to retrieve the mantissa Mz, the 
Normalization block in Fig. finally rearranges φk in 
the interval [1, 2). As previously mentioned, the 
quotient fluctuates in [0.5, 2), and as a result, its MSB 
(shown in the picture as φk[nφ−1]) has a weight of 
20. The normalizing process adds a zero at the least 
significant position to twice the quotient if 
φk[nφ−1] = 0, which places φk in the range [0.5, 1] 
(see the signal φ1 in the normalizing process). 
Additionally, ∼φk[nφ−1] is deducted to the 
exponent in order to account for compensation, 
where "∼" signifies the inversion operator. 

On the other hand, no additional operation is needed 
if φk[nφ − 1] = 1. This indicates that φk is already in 
[1, 2). In this instance, Mz is represented by the 
fractional component of φk (refer to the signal φ2 in 
the picture). 
A multiplexer in Fig. 5's design chooses between φ1 

and φ2, and the least significant position of zeros is 

added to describe the outcome on 23 bits. 

 

ASSESSMENT OF PERFORMANCES 

A. Measures of Error 

Let Q and Qapprx stand for the exact and approximate 

quotients, respectively. As demonstrated in Section II, 

the approximation error is defined as E = Q − Qapprx, 

and the relative error distance and mean relative error 

distance are denoted as RED = |E/Q| and MRED = 

avg(RED), respectively. The average operator is 

represented by avg(・). Additionally, we calculate the 

likelihood of having RED greater than 2% (referred to 

as PRED below) and the Error Bias, which is defined 

as EB = avg(E/Q) [49]. 

In order to calculate the error metrics, 106 divisions are 

made using 106 pairs of randomly distributed, single-
precision floating-point values. For the purpose of 

accomplishing the mantissas division, we will examine 

examples (i), (ii), (iii), and (iv) in the following. The 

related floating-point dividers are designated 

FPDME4(7, 1, 3), FPDME8(7, 1, 4), FPDME16(7, 1, 

4), and FPDME32(7, 1, 5), respectively. For reference, 

we also give the scenario without truncation and 

change the number of discarded LSBs nt.  

The performances of dividers [42], [44], [48], [49], and 

[50] are also included for comparison's purposes. The 

divider [42], which we will refer to as ALD from here 

on, processes just the first q MSB of Mx and My (q = 
8 in our experiments) and subtracts mantissas in the 

LNS form. The work [49] uses 2d values, where d is 

either 2 or 3, to approach 1/(1 + My) and takes 

advantage of a truncated multiplier with t preserved 

columns. The divider [49] will be shown as LPCAD(d, 

t) in the following, where t = 4, 8. The mantissas' plane 

is divided into 2P × 2P square areas by the work [50], 

which will be referred to as CADE henceforth. For 

each section, an error compensation term represented 

in L bits is computed. We consider L = 8 and P = 3, 4 

for our investigation. The design [44], known as 

TruncApp, uses just r bits to compute the quotient—r 

= 4 in our trials—and utilizes linear approximation for 
the term 1/(1 + My). Lastly, the work [48] uses two 

alternative shift-and-add operations (with α setting the 

approximation level) to realize the division. 

Additionally, β adders are used in each operation, and 

their addends are shortened on 5 bits. We refer to [48] 

as FPAD LαAβ in the following. The error metrics for 

the state-of-the-art and the suggested divider are 

gathered in Table V, where MRED and EB are given 

as percentage values. The performance of the 

architecture suggested in this work varies, as predicted, 

depending on the number of partitions N. For N = 32, 

the MRED increases from 1.5% to 0.33%. In addition, 
PRED shows a noticeable dependence, going from 2.4 

× 10−1 to 3.2 × 10−4, while EB findings are nearly 

constant. Furthermore, nt influences the divider's 

accuracy; a low number of truncated LSBs results in 

the best approximation. 

Concerning the other implementations, only 

LPCAD(2, 8), LPCAD(3, 8), and CADE can provide 

error metrics that are equivalent to the suggested 

FPDME; CADE, for example, can achieve an MRED 

of 0.65% with P = 4 and L = 8. The accuracy of the 

other divisions is lower, with MRED being 2% or 
more. The worst results are displayed in this instance 

by ALD and TruncApp, with MRED of around 4% and 

PRED of almost 7 × 10−1. 

 

B. Hardware Performances 

Using a physical flow in Cadence Genus, we 

synthesized the circuits in TSMC 28nm CMOS 

technology and detailed the suggested and cutting-edge 

dividers in Verilog HDL. 

We have implemented FPDME4(7, 1, 3) for the 

proposed FPDME architecture using nt = 15 or nt = 17, 

whereas nt = 16 has been used for the implementation 
of FPDME8(7, 1, 4), FPDME16(7, 1, 4), and 

FPDME32(7, 1, 5). As previously indicated, the LUTs 

are built using the library's standard cells during the 

synthesis process and are defined using procedural 

blocks.  

In the initial trial, we set a relatively lax maximum 

delay (10ns) on the circuits to enable the synthesizer to 

create least area and minimum power versions of the 

dividers. In this instance, we additionally generated the 

precise floating-point division using the synthesizer's 

ChipAware module.  
To study the performance when a higher operating 

frequency is needed, we conducted a second 

experiment with a tighter maximum delay limitation 

(750 ps). Since meeting the timing limit would be 

impossible given the circuit's complexity, we have 

decided not to include the precise divider in this second 

experiment.  

The generated netlists with 105 random inputs are 

simulated in both trials to determine the power 
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consumption. Path delays are documented in standard 

delay format (SDF) files, while switching activity is 

annotated in toggle count format (TCF) files. 

The first experiment's results are included in Table VI. 

The power-delay product (PDP) and the area-delay 
product (ADP) are presented in the final two columns.  

Regarding the precise divider, the PDP is significantly 

decreased by all of the examined designs. ALD and 

TruncApp display the best results, with PDP in the 

range of 3fJ. On the other hand, these architectures also 

have the biggest inaccuracy.  

The suggested design demonstrates a reasonable 

balance between PDP and error. With the exception of 

CADE P = 4 L = 8, LPCAD(2, 8) and LPCAD(3, 8) 

alone, FPDME4(7, 1, 3) nt = 17 displays a lower PDP 

and error in comparison to all versions of LPCAD, 

CADE, and FPAD. 
For the ADP, a similar tendency is also seen. Similarly, 

the findings of the second experiment are gathered in 

Table VII. As demonstrated, our dividers provide PDP 

and ADP that are on par with LPCAD, CADE P = 3, L 

= 8, and FPAD; FPDME4(7, 1, 3) nt = 17 yields the 

greatest results. Hardware complexity is best displayed 

by ALD and TruncApp, whereas PDP and ADP are 

poorer in CADE P = 4, L = 8.  

To facilitate a combined evaluation of the electrical and 

accuracy performances, Fig. 6 shows the PDP and the 

ADP for each experiment in relation to the MRED. The 
Pareto front is defined in this case by implementations 

that are closer to the bottom-left corner and have low 

PDP/ADP with good precision. 

The suggested dividers, as indicated by the black 

dashed line in Fig. 6a, are all on the Pareto front and 

provide the optimal trade-off between PDP and 

MRED. The only implementations that behave poorly 

are ALD and TruncApp, with only LPCAD(3, 8) being 

near to the ideal curve. All other implementations, on 

the other hand, have a significant MRED. In order to 

find the optimal trade-off between ADP and MRED, 

the suggested FPDME are also on the pareto front. 
Once more, LPCAD(3, 8) yields competitive results for 

low accuracy, along with ALD and TruncApp. 

 

SIMULATION RESULTS: 

 
 

 
 

 

 
 

 
 

 
 

 

 

CONCLUSION 

We have presented a new non-iterative linear 

approximation-based approximate floating-point 

divider in this work. The quotient (1 + Mx)/(1 + My) 

has been roughly represented in our divider as a linear 

function of Mx with coefficients reliant on My. In order 

to minimize the approximation's Mean Relative Error 

Distance (MRED), the coefficients have been 
computed. In order to do this, the range of My has been 

divided into N sub-intervals, and the minimization of 

MRED has been presented as a linear programming 

problem in each subinterval, the solution to which 
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yields the ideal values for the coefficients. To further 

improve the design, Mantissa truncation and 

coefficient quantization have also been utilized. 

A detailed description of the whole floating-point 

divider's hardware structure has been provided, and the 
suggested architecture's performance has been 

contrasted with that of earlier approximations of 

dividers. Based on a wide variety of mean relative error 

distance values, our study demonstrates that the 

suggested design outperforms the state of the art and 

provides the optimal trade-off between PDP/ADP and 

accuracy. Additionally, we have data for two image 

processing applications that demonstrate the benefits of 

the suggested method with competitive results in terms 

of Mean Structural Similarity Index (SSIM) and peak 

signal to noise ratio (PSNR). 

 

REFERENCES 

[1] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. 

Han, “Approximate arithmetic circuits: A survey, 

characterization, and recent applications,” Proc. IEEE, 

vol. 108, no. 12, pp. 2108–2135, Dec. 2020, doi: 

10.1109/JPROC.2020.3006451. 

[2] J. Gubbi, R. Buyya, S. Marusic, and M. 

Palaniswami, “Internet of Things (IoT): A vision, 

architectural elements, and future directions,” Future 

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 

Sep. 2013, doi: 10.1016/j.future.2013.01.010. 
[3] F. Spagnolo, S. Perri, and P. Corsonello, 

“Approximate down-sampling strategy for power-

constrained intelligent systems,” IEEE Access, vol. 10, 

pp. 7073–7081, 2022, doi: 

10.1109/ACCESS.2022.3142292. 

[4] J. Han and M. Orshansky, “Approximate 

computing: An emerging paradigm for energy-efficient 

design,” in Proc. 18th IEEE Eur. Test Symp. (ETS), 

Avignon, France, May 2013, pp. 1–6, doi: 

10.1109/ETS.2013.6569370. 

[5] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. 

Raghunathan, “Analysis and characterization of 
inherent application resilience for approximate 

computing,” in Proc. 50th ACM/EDAC/IEEE Design 

Autom. Conf. (DAC), Austin, TX, USA, May 2013, 

pp. 1–9, doi: 

10.1145/2463209.2488873. 

[6] R. J. Radke, S. Andra, O. Al-Kofahi, and B. 

Roysam, “Image change detection algorithms: A 

systematic survey,” IEEE Trans. Image Process., vol. 

14, no. 3, pp. 294–307, Mar. 2005, doi: 

10.1109/TIP.2004.838698. 

[7] D. Esposito, G. Di Meo, D. De Caro, A. G. M. 
Strollo, and E. Napoli, “Quality-scalable approximate 

LMS filter,” in Proc. 25th IEEE Int. Conf. Electron., 

Circuits Syst. (ICECS), Bordeaux, France, Dec. 2018, 

pp. 849–852, doi: 10.1109/ICECS.2018.8617858. 

[8] G. Di Meo, D. De Caro, G. Saggese, E. Napoli, N. 

Petra, and A. G. M. Strollo, “A novel module-sign low-

power implementation for the DLMS adaptive filter 

with low steady-state error,” IEEE Trans. Circuits Syst. 

I, Reg. Papers, vol. 69, no. 1, pp. 297–308, Jan. 2022, 

doi: 10.1109/TCSI.2021.3088913. 

[9] D. Mohapatra, V. K. Chippa, A. Raghunathan, and 

K. Roy, “Design of voltage-scalable meta-functions for 

approximate computing,” in Proc. Design, Automat. 
Test Europe, Grenoble, France, 2011, pp. 1–6, doi: 

10.1109/DATE.2011.5763154. 

[10] A. B. Kahng and S. Kang, “Accuracy-

configurable adder for approximate arithmetic 

designs,” in Proc. Design Autom. Conf., San 

Francisco, CA, USA, Jun. 2012, pp. 820–825, doi: 

10.1145/2228360.2228509.  

[11] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, 

“A low latency generic accuracy configurable adder,” 

in Proc. 52nd ACM/EDAC/IEEE Design Autom. Conf. 

(DAC), San Francisco, CA, USA, Jun. 2015, pp. 1–6, 

doi: 10.1145/2744769.2744778. 
[12] K. Du, P. Varman, and K. Mohanram, “High 

performance reliable variable latency carry select 

addition,” in Proc. Design, Autom. Test Eur. Conf. 

Exhib. (DATE), Dresden, Germany, Mar. 2012, pp. 

1257–1262, doi: 10.1109/DATE.2012.6176685. 

[13] Y. Kim, Y. Zhang, and P. Li, “An energy efficient 

approximate adder with carry skip for error resilient 

neuromorphic VLSI systems,” in Proc. IEEE/ACM Int. 

Conf. Comput.-Aided Design (ICCAD), San Jose, CA, 

USA, Nov. 2013, pp. 130–137, doi: 

10.1109/ICCAD.2013.6691108. 
[14] L. Li and H. Zhou, “On error modeling and 

analysis of approximate adders,” in Proc. IEEE/ACM 

Int. Conf. Comput.-Aided Design (ICCAD), San Jose, 

CA, USA, Nov. 2014, pp. 511–518, doi: 

10.1109/ICCAD.2014.7001399. 

[15] D. Esposito, D. De Caro, and A. G. M. Strollo, 

“Variable latency speculative parallel prefix adders 

for unsigned and signed operands,” IEEE Trans. 

Circuits Syst. I, Reg. Papers, vol. 63, no. 8, pp. 1200–

1209, Aug. 2016, doi: 10.1109/TCSI.2016.2564699. 

[16] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and 

C. Lucas, “Bio-inspired imprecise computational 
blocks for efficient VLSI implementation of soft-

computing applications,” IEEE Trans. Circuits Syst. I, 

Reg. Papers, vol. 57, no. 4, pp. 850–862, Apr. 2010, 

doi: 

10.1109/TCSI.2009.2027626. 

[17] Z. Yang, A. Jain, J. Liang, J. Han, and F. 

Lombardi, “Approximate XOR/XNOR-based adders 

for inexact computing,” in Proc. 13th IEEE Int. Conf. 

Nanotechnol., Beijing, China, Aug. 2013, pp. 690–

693, doi: 10.1109/NANO.2013.6720793.  

[18] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, 
and G. D. Meo, “Comparison and extension of 

approximate 4–2 compressors for low-power 

approximate multipliers,” IEEE Trans. Circuits Syst. I, 

Reg. Papers, vol. 67, no. 9, pp. 3021–3034, Sep. 2020, 

doi: 10.1109/TCSI.2020.2988353. 

[19] Z. Yang, J. Han, and F. Lombardi, “Approximate 

compressors for error-resilient multiplier design,” in 

Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI 

http://www.ijesat.com/


International Journal of Engineering Science and Advanced Technology (IJESAT)                          

Vol 24 Issue 09, SEP, 2024 

ISSN No: 2250-3676   www.ijesat.com Page | 50  

 

Nanotechnol. Syst. (DFTS), Amherst, MA, USA, Oct. 

2015, pp. 183–186, doi: 10.1109/DFT.2015.7315159. 

[20] M. Ha and S. Lee, “Multipliers with approximate 

4–2 compressors and error recovery modules,” IEEE 

Embedded Syst. Lett., vol. 10, no. 1, pp. 6–9, Mar. 
2018, doi:  10.1109/LES.2017.2746084. 

[21] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. 

Pedram, “Dualquality 4:2 compressors for utilizing in 

dynamic accuracy configurable multipliers,” IEEE 

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, 

no. 4, pp. 1352–1361, Apr. 2017, doi: 

10.1109/TVLSI.2016.2643003. 

[22] F. Sabetzadeh, M. H. Moaiyeri, and M. 

Ahmadinejad, “A majority based imprecise multiplier 

for ultra-efficient approximate image multiplication,” 

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 

11, pp. 4200–4208, Nov. 2019, doi: 
10.1109/TCSI.2019. 2918241. 

[23] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and 

A. G. M. Strollo, “Truncated binary multipliers with 

variable correction and minimum mean square error,” 

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 

6, pp. 1312–1325, Jun. 2010, doi: 

10.1109/TCSI.2009.2033536. 

[24] J. M. Jou, S. R. Kuang, and R. Der Chen, 

“Design of low-error fixed-width multipliers for DSP 

applications,” IEEE Trans. Circuits Syst. II, Analog 

Digit. Signal Process., vol. 46, no. 6, pp. 836–842, 
Jun. 1999, doi: 10.1109/82.769795. 

[25] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, 

T. Park, and N. S. Kim, “Energy-efficient approximate 

multiplication for digital signal processing and 

classification applications,” IEEE Trans. Very Large 

Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–

1184, Jun. 2015, doi: 10.1109/TVLSI.2014.2333366. 

[26] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, 

G. Saggese, and G. Di Meo, “Approximate multipliers 

using static segmentation: Error analysis and 

improvements,” IEEE Trans. Circuits Syst. I, Reg. 

Papers, vol. 69, no. 6, pp. 2449–2462, Jun. 2022, doi: 
10.1109/TCSI.2022.3152921. 

[27] G. Di Meo, G. Saggese, A. G. M. Strollo, and D. 

De Caro, “Design of generalized enhanced static 

segment multiplier with minimum mean square error 

for uniform and nonuniform input distributions,” 

Electronics, vol. 12, p. 446, Jan. 2023, doi: 

10.3390/electronics12020446. 

[28] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A 

dynamic range unbiased multiplier for approximate 

applications,” in Proc. IEEE/ACM Int. Conf. Comput.-

Aided Design (ICCAD), Austin, TX, USA, Nov. 2015, 
pp. 418–425, doi: 10.1109/ICCAD.2015.7372600. 

[29] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. 

Pedram, “TOSAM: An energy-efficient truncation- 

and rounding-based scalable approximate multiplier,” 

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 

vol. 27, no. 5, pp. 1161–1173, May 2019, doi: 

10.1109/TVLSI.2018.2890712.  

[30] N. Burgess and C. N. Hinds, “Design of the ARM 

VFP11 divide and square root synthesisable 

macrocell,” in Proc. 18th IEEE Symp. Comput. 

Arithmetic (ARITH), Jun. 2007, pp. 87–96. 

[31] G. Gerwig, H. Wetter, E. M. Schwarz, and J. 

Haess, “High performance floating-point unit with 116 

bit wide divider,” in Proc. 16th IEEE Symp. Comput. 
Arithmetic, Mar. 2003, pp. 87–94. 

[32] S. F. Oberman, “Floating point division and 

square root algorithms and implementation in the 

AMD-K7T M microprocessor,” in Proc. 14th IEEE 

Symp. Comput. Arithmetic, Apr. 1999, pp. 106–115. 

[33] D. W. Sweeney, “Divider device for skipping a 

string of zeros or radix minus-one digits,” U.S. Patent 

3 145 296, Aug. 18, 1964. 

[34] J. E. Robertson, “A new class of digital division 

methods,” IRE Trans. Electron. Comput., vol. EC-7, 

no. 3, pp. 218–222, Sep. 1958, doi: 

10.1109/TEC.1958.5222579. 
[35] K. D. Tocher, “Techniques of multiplication and 

division for automatic binary computers,” Quart. J. 

Mech. Appl. Math., vol. 11, no. 3, pp. 364–384, 1958, 

doi: 10.1093/qjmam/11.3.364. 

[36] M. J. Flynn, “On division by functional iteration,” 

IEEE Trans. Comput., vol. C-19, no. 8, pp. 702–706, 

Aug. 1970, doi: 10.1109/TC. 1970.223019. 

[37] R. E. Goldschmidt, “Applications of division by 

convergence,” Ph.D. dissertation, Massachusetts Inst. 

Technol., Cambridge, MA, USA, 1964. 

[38] J. Ebergen and N. Jamadagni, “Radix-2 division 
algorithms with an over-redundant digit set,” IEEE 

Trans. Comput., vol. 64, no. 9, pp. 2652–2663, Sep. 

2015, doi: 10.1109/TC.2014.2366738. 

[39] L. Chen, J. Han, W. Liu, and F. Lombardi, 

“Design of approximate unsigned integer non-restoring 

divider for inexact computing,” in Proc. 25th Great 

Lakes Symp. VLSI, May 2015, pp. 51–56. 

[40] L. Chen, J. Han, W. Liu, and F. Lombardi, “On the 

design of approximate restoring dividers for error-

tolerant applications,” IEEE Trans. Comput., vol. 65, 

no. 8, pp. 2522–2533, Aug. 2016, doi: 

10.1109/TC.2015.2494005. 
[41] S. Hashemi, R. I. Bahar, and S. Reda, “A low-

power dynamic divider for approximate applications,” 

in Proc. 53rd ACM/EDAC/IEEE Design Autom. Conf. 

(DAC), Austin, TX,  USA, Jun. 2016, pp. 1–6, doi: 

10.1145/2897937.2897965. 

[42] J. N. Mitchell, “Computer multiplication and 

division using binary logarithms,” IRE Trans. Electron. 

Comput., vol. EC-11, no. 4, pp. 512–517, Aug. 1962, 

doi: 10.1109/TEC.1962.5219391. 

[43] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-

Kusha, S. Safari, and M. Pedram, “SEERAD: A high 
speed yet energy-efficient rounding based approximate 

divider,” in Proc. Design, Autom. Test Eur. Conf. 

Exhib. (DATE), Dresden, Germany, Mar. 2016, pp. 

1481–1484. 

[44] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. 

Pedram, and Z. Navabi, “TruncApp: A truncation-

based approximate divider for energy efficient DSP 

applications,” in Proc. Design, Autom. Test Eur. Conf. 

http://www.ijesat.com/


International Journal of Engineering Science and Advanced Technology (IJESAT)                          

Vol 24 Issue 09, SEP, 2024 

ISSN No: 2250-3676   www.ijesat.com Page | 51  

 

Exhib., Lausanne, Switzerland, Mar. 2017, pp. 1635–

1638, doi: 

10.23919/DATE.2017.7927254. 

[45] H. Saadat, H. Javaid, and S. Parameswaran, 

“Approximate integer and floating-point dividers with 
near-zero error bias,” in Proc. 56th ACM/IEEE Design 

Autom. Conf. (DAC), Las Vegas, NV, USA, Jun. 2019, 

pp. 1–6. 

[46] M. Vaeztourshizi, M. Kamal, A. Afzali-Kusha, 

and M. Pedram, “An energy-efficient, yet highly-

accurate, approximate non-iterative divider,” in Proc. 

Int. Symp. Low Power Electron. Design, New York, 

NY, USA, Jul. 2018, pp. 1–6, doi: 

10.1145/3218603.3218650. 

[47] IEEE Standard for Floating-Point Arithmetic, 

IEEE Standard 754-2019, Jul. 2019, doi: 

10.1109/IEEESTD.2019.8766229. 
[48] C. K. Jha, K. Prasad, V. K. Srivastava, and J. 

Mekie, “FPAD: A multistage approximation 

methodology for designing floating point approximate 

dividers,” in Proc. IEEE Int. Symp. Circuits Syst. 

(ISCAS), Seville, Spain, Oct. 2020, pp. 1–5, doi: 

10.1109/ISCAS45731.2020.9180768. 

[49] Y. Wu et al., “An energy-efficient approximate 

divider based on  logarithmic conversion and piecewise 

constant approximation,” IEEE Trans. Circuits Syst. I, 
Reg. Papers, vol. 69, no. 7, pp. 2655–2668, Jul. 2022, 

doi: 10.1109/TCSI.2022.3167894. 

[50] M. Imani, R. Garcia, A. Huang, and T. Rosing, 

“CADE: Configurable approximate divider for energy 

efficiency,” in Proc. Design, Autom. Test Eur. Conf. 

Exhib. (DATE), Florence, Italy, Mar. 2019, pp. 586–

589, doi: 10.23919/DATE.2019.8715112. 

[51] L. Wu and C. C. Jong, “A curve fitting approach 

for non-iterative divider design with accuracy and 

performance trade-off,” in Proc. IEEE 13th Int. New 

Circuits Syst. Conf. (NEWCAS), Grenoble, France, 

Jun. 2015, pp. 1–4, doi: 
10.1109/NEWCAS.2015.7182097. 

[52] The USC-SIPI Image Database. [Online]. 

Available: https://sipi.usc.edu/database/

 

http://www.ijesat.com/
https://sipi.usc/

