
MACHINE LEARNING BASED AN AUTOMATIC ADVISOR FOR 

REFACTORING SOFTWARE CLONES  

1Mr. RAMBABU ATMAKURI - Head, Department of CSE, Anurag College of Engineering 

(Aushapur, Ghatkesar, Telangana 501301) 

2Mr.BATTU BALA KRISHNA  - Student, Department of CSE, Anurag College of Engineering 

(Aushapur, Ghatkesar, Telangana 501301) 

3Ms.HEREMAT SUMASREE - Student, Department of CSE, Anurag College of Engineering 

(Aushapur, Ghatkesar, Telangana 501301) 

4Mr. KARRI SANTHOSH KUMAR - Student, Department of CSE, Anurag College of Engineering 

(Aushapur, Ghatkesar, Telangana 501301) 

5Mr.KOLLOJU SANJAY  - Student, Department of CSE, Anurag College of Engineering (Aushapur, 

Ghatkesar, Telangana 501301) 

ABSTRACT: 

To assist developers refactored code and to enable improvements to software quality when numbers of 

clones are found in software programs, we require an approach to advise developers on what a clone 

needs to refactor and what type of refactoring is needed. This paper suggests a unique learning method 

that automatically extracts features from the detected code clones and trains models to advise developers 

on what type needs to be refactored. Our approach differs from others which specify types of refactored 

clones as classes and creates a model for detecting the types of refactored clones and the clones which are 

anonymous. We introduce a new method by which to convert refactoring clone type outliers into 

Unknown clone set to improve classification results. We present an extensive comparative study and an 

evaluation of the efficacy of our suggested idea by using state-of-the-art classification models 

I. INTRODUCTION: 

CODE clones are pairs of code fragments which 

have a high degree of similarity or which are 

identical. Code clones might cause software 

maintenance to be more difficult and a system’s 

source codes more difficult to understand. Code 

cloning is a popular practice in the software 

development process for a number of reasons, 

such as reusing code by "copy-and-paste" to 

increasing the speed of writing the code . There 

are various clone detector techniques which 

attempt to find code fragments which have a 

high number of similarities in the system’s 

source code. Additionally, there have been 

various refactoring clone tools developed which 

change the structure of detected code clones 

without altering code fragment behaviour. The 

refactoring code clones are a method by which 

to minimize the chances of introducing a bug. 

Refactoring, or removing, is utilized for 

improving software comprehensibility and 

maintainability. Although have shown that clone 

refactoring cannot solve software quality 

improvements for two reasons. Firstly, clones 

often have a short lifespan. Refactoring is less 

effective if there are block branches in a short 

distance. Secondly, longer living clones which 

have been altered with another element in the 

same class are difficult to remove or refactor. 

Additionally, it is a bug which can be simply 

corrected as the source code can be easily 

understood, which allows improvement of 

malleability resulting in code extensibility. Our 

approach provides different types of refactoring 

recommendation to a developer for preventing to 

remove the positive side of code clones and 

builds a training model after removing outliers 

to improve the results. Our tool can be built and 

used to minimize bugs in a system. Our study 

can improve clone maintenance by removing 

duplication code by identifying refactoring 

clones. Also, the possibility of bad design for a 

system, difficulty in a system improvement or 

modification, introducing a new bug, can be 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 21



decreased by identifying and refactoring clones. 

In addition, our study can be utilized by various 

applications such as source code or text 

plagiarism, malware detection, obfuscated code 

detection. In summary, the main contributions of 

this paper are: • A presentation of a new 
machine learning framework that automatically 

extracts features from the 

1.1Objective of the Project: 

To assist developers refactored code and to 

enable improvements to software quality when 

numbers of clones are found in software 

programs, we require an approach to advise 

developers on what a clone needs to refactor and 

what type of refactoring is needed. This paper 

suggests a unique learning method that 

automatically extracts features from the detected 

code clones and trains models to advise 

developers on what type needs to be refactored. 

Our approach differs from others which specify 

types of refactored clones as classes and creates 

a model for detecting the types of refactored 

clones and the clones which are anonymous. We 

introduce a new method by which to convert 

refactoring clone type outliers into Unknown 

clone set to improve classification results. We 

present an extensive comparative study and an 

evaluation of the efficacy of our suggested idea 

by using state-of-the-art classification models 

II. LITERATURE SURVEY 

‘‘Code clone detection experience at 

Microsoft,’’ 
Cloning source code is a common practice in the 

software development process. In general, the 

number of code clones increases in proportion to 

the growth of the code base. It is challenging to 

proactively keep clones consistent and remove 

unnecessary clones during the entire software 

development process of large-scale commercial 

software. In this position paper, we briefly share 

some typical usage scenarios of code clone 

detection that we collected from Microsoft 

engineers. We also discuss our experience on 

building XIAO, a code clone detection tool, and 

the feedback we have received from Microsoft 

engineers on using XIAO in real development 

settings. 

‘‘Automatic clone recommendation for 

refactoring based on the present and the 

past,’’ 
When many clones are detected in software 

programs, not all clones are equally important to 

developers. To help developers refactor code 

and improve software quality, various tools were 

built to recommend clone-removal refactoring 

based on the past and the present information, 

such as the cohesion degree of individual clones 

or the co-evolution relations of clone peers. The 

existence of these tools inspired us to build an 

approach that considers as many factors as 

possible to more accurately recommend clones. 

This paper introduces CREC, a learning-based 

approach that recommends clones by extracting 

features from the current status and past history 

of software projects. Given a set of software 

repositories, CREC first automatically extracts 

the clone groups historically refactored (R-

clones) and those not refactored (NR-clones) to 

construct the training set. CREC extracts 34 

features to characterize the content and 

evolution behaviors of individual clones, as well 

as the spatial, syntactical, and co-change 

relations of clone peers. With these features, 

CREC trains a classifier that recommends clones 

for refactoring. We designed the largest feature 

set thus far for clone recommendation, and 

performed an evaluation on six large projects. 

The results show that our approach suggested 

refactorings with 83% and 76% F-scores in the 

within-project and cross-project settings. CREC 

significantly outperforms a state-of-the-art 

similar approach on our data set, with the latter 

one achieving 70% and 50% F-scores. We also 

compared the effectiveness of different factors 

and different learning algorithms. 

‘‘Method-level code clone modification using 

refactoring techniques for clone 

maintenance,’’ 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 22



Researchers focused on activities such as clone 

maintenance to assist the programmers. 

Refactoring is a well-known process to improve 

the maintainability of the software. Program 

refactoring is a technique to improve readability, 

structure, performance, abstraction, 

maintainability, or other characteristics by 

transforming a program. This paper contributes 

to a more unified approach for the phases of 

clone maintenance with a focus on clone 

modification. This approach uses the refactoring 

technique for clone modification. To detect the 

clones ‘CloneManager’ tool has been used. This 

approach is implemented as an enhancement to 

the existing tool CloneManager. The enhanced 

tool is tested with the open source projects and 

the results are compared with the performance of 

other three existing tools. 

‘‘An empirical study of code clone 

genealogies,’’ 
It has been broadly assumed that code clones are 

inherently bad and that eliminating clones by 

refactoring would solve the problems of code 

clones. To investigate the validity of this 

assumption, we developed a formal denition of 

clone evolution and built a clone genealogy tool 

that automatically extracts the history of code 

clones from a source code repository. Using our 

tool we extracted clone genealogy information 

for two Java open source projects and analyzed 

their evolution. Our study contradicts some 

conventional wisdom about clones. In particular, 

refactoring may not always improve software 

with respect to clones for two reasons. First, 

many code clones exist in the system for only a 

short time; extensive refactoring of such short-

lived clones may not be worthwhile if they are 

likely diverge from one another very soon. 

Second, many clones, especially long-lived 

clones that have changed consistently with other 

elements in the same group, are not easily 

refactorable due to programming language 

limitations. These insights show that refactoring 

will not help in dealing with some types of 

clones and open up opportunities for 

complementary clone maintenance tools that 

target these other classes of clones. 

‘‘Frequency and risks of changes to clones," 

Code Clones - duplicated source fragments - are 

said to increase maintenance effort and to 

facilitate problems caused by inconsistent 

changes to identical parts. While this is certainly 

true for some clones and certainly not true for 

others, it is unclear how many clones are real 

threats to the system's quality and need to be 

taken care of. Our analysis of clone evolution in 

mature software projects shows that most clones 

are rarely changed and the number of 

unintentional inconsistent changes to clones is 

small. We thus have to carefully select the 

clones to be managed to avoid unnecessary 

effort managing clones with no risk potential. 

‘‘Recommending clones for refactoring using 

design, context, and history,’’ 
Developers know that copy-pasting code (aka 

code cloning) is often a convenient shortcut to 

achieving a design goal, albeit one that carries 

risks to the code quality over time. However, 

deciding which, if any, clones should be 

eliminated within an existing system is a 

daunting task. Fixing a clone usually means 

performing an invasive refactoring, and not all 

clones may be worth the effort, cost, and risk 

that such a change entails. Furthermore, 

sometimes cloning fulfils a useful design role, 

and should not be refactored at al. And clone 

detection tools often return very large result sets, 

making it hard to choose which clones should be 

investigated and possibly removed. In this paper, 

we propose an automated approach to 

recommend clones for refactoring by training a 

decision tree-based classifier. We analyze more 

than 600 clone instances in three medium-to 

large-sized open source projects, and we collect 

features that are associated with the source code, 

the context, and the history of clone instances. 

Our approach achieves a precision of around 

80% in recommending clone refactoring 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 23



instances for each target system, and similarly 

good precision is achieved in cross-project 

evaluation. By recommending which clones are 

appropriate for refactoring, our approach allows 

for better resource allocation for refactoring 

itself after obtaining clone detection results, and 

can thus lead to improved clone management in 

practice. 

III. SYSTEM ANALYSIS 

3.1 EXISTING SYSTEM: 

Several studies are related to code clone 

refactoring. Higo et al. [7] suggest a method that 

refactors code clones using existing refactoring 

patterns such as the Extract and Pull Up Method. 

This research performed fully automated 

refactoring without developer intervention. The 

developer should evaluate refactoring based on 

their preference and indicate any clone which is 

a probable candidate for refactoring. Conversely, 

our work extracts features and relies on machine 

learning to build our model and classify clones 

according to the type of refactored clone and 

those which are not refactored. Next, the 

developer evaluated the refactoring clones. Higo 

et al. [8] suggested a method that detects 

refactoring-oriented code clone to improve the 

usefulness and applicability of the software 

maintenance method. Higo et al. [9] proposed a 

refactoring method for merging software clones. 

Their technique can detect a refactoring-oriented 

code clone in a general clone detected by token-

based or text-based clone detection tools. We 

refactor clones using AST-based and PDG-based 

clone detection tools. 

Disadvantage: 

 Less Accuracy 

3.2 PROPOSED SYSTEM: 

In this paper for the Unknown set classification, 

our adopted work model combines supervised 

learning classifiers and outlier detection for 

unknown classes model. This paper discusses 

the common and recent classification algorithms 

used for refactoring code clone classification 

and an outlier detection model combined for 

classifying the test examples as belonging to 

known or unknown class sizes. The improved 

performances of our classifier model are reliant 

upon its closed set validation. Model validation 

in machine learning is the process whereby 

trained models are evaluated with testing 

datasets. The testing dataset in closed set 

validation contains examples which belong to 

known classes. We ran an outlier algorithm for 

datasets to find the data points which have 

considerably dissimilarity or inconsistency with 

the other given data points. Then, the data point 

classes are changed into unknown classes. After 

detecting outlier data points, we build our model 

for closed-set classification and perform analysis 

of their performance after training. We train and 

test our classifier with vectors of datasets. 

Advantage: 

 High Accuracy    

IV. MODULES 

1. User: This module is responsible for handling 

user interactions and providing 

recommendations, guidance or suggestions 

users. Typically software developers to 

maintainers, to help them refactor or eliminate 

code clones in their codebase. 

2. System: Features will be converted into 

trainand test records andthen based on similarity 

between code modules class label will be 

assigned as 0 or 1. If code contains so many 

similar words then 1 will be assigned other wise 

0 will be assigned. Using this module various 

machine learning algorithms will be applied 

such as SVM, KNN, Bagging classifier and 

Random Forest. 

 

V. SYSTEM DESIGN 

Class Diagram: 

The class diagram is the main building block 

of object oriented modeling. It is used both for 

general conceptual modeling of the systematic 

of the application, and for detailed modeling 

translating the models into programming code. 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 24



Class diagrams can also be used for data 

modeling. The classes in a class diagram 

represent both the main objects, interactions in 

the application and the classes to be 

programmed. In the diagram, classes are 

represented with boxes which contain three 

parts: 

 The upper part holds the name of the 

class 

 The middle part contains the attributes 

of the class 

 The bottom part gives the methods or 

operations the class can take or 

undertake 

 
Use case Diagram: 

A use case diagram at its simplest is a 

representation of a user's interaction with the 

system and depicting the specifications of a use 

case. A use case diagram can portray the 

different types of users of a system and the 

various ways that they interact with the system. 

This type of diagram is typically used in 

conjunction with the textual use case and will 

often be accompanied by other types of 

diagrams as well. 

 
Sequence diagram: 

A sequence diagram is a kind of 

interaction diagram that shows how processes 

operate with one another and in what order. It is 

a construct of a Message Sequence Chart. A 

sequence diagram shows object interactions 

arranged in time sequence. It depicts the objects 

and classes involved in the scenario and the 

sequence of messages exchanged between the 

objects needed to carry out the functionality of 

the scenario. Sequence diagrams are typically 

associated with use case realizations in the 

Logical View of the system under development. 

Sequence diagrams are sometimes called event 

diagrams, event scenarios, and timing diagrams. 

 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 25



Collaboration diagram: 

A collaboration diagram describes 

interactions among objects in terms of 

sequenced messages. Collaboration diagrams 

represent a combination of information taken 

from class, sequence, and use case diagrams 

describing both the static structure and dynamic 

behaviour of a system. 

 
Component Diagram: 

In the Unified Modelling Language, a 

component diagram depicts how components are 

wired together to form larger components and or 

software systems. They are used to illustrate the 

structure of arbitrarily complex systems. 

Components are wired together by using 

an assembly connector to connect the required 

interface of one component with the provided 

interface of another component. This illustrates 

the service consumer - service provider 

relationship between the two components. 

 

 
Deployment Diagram: 

A deployment diagram in the Unified 

Modeling Language models the physical 

deployment of artifacts on nodes. To describe a 

web site, for example, a deployment diagram 

would show what hardware components 

("nodes") exist (e.g., a web server, an 

application server, and a database server), what 

software components ("artifacts") run on each 

node (e.g., web application, database), and how 

the different pieces are connected (e.g. JDBC, 

REST, RMI). 

The nodes appear as boxes, and the 

artifacts allocated to each node appear as 

rectangles within the boxes. Nodes may have 

sub nodes, which appear as nested boxes. A 

single node in a deployment diagram may 

conceptually represent multiple physical nodes, 

such as a cluster of database servers. 

 
Activity Diagram: 

Activity diagram is another important 

diagram in UML to describe dynamic aspects of 

the system. It is basically a flow chart to 

represent the flow form one activity to another 

activity. The activity can be described as an 

operation of the system. So the control flow is 

drawn from one operation to another. This flow 

can be sequential, branched or concurrent 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 26



 
 

 

VI. SCREEN SHOTS: 

To run project double click on ‘run.bat’ file to 

get below screen 

 
In above screen click on ‘Upload Code 

Repository Dataset’ button and upload dataset 

 
In above screen selecting and uploading 

‘Dataset’ folder and then click on ‘Select Folder’ 
button to load dataset and then wait for few 

second so application read all code file and then 

will get below screen 

 
In above screen application read each code file 

and then process it and total java files found in 

dataset is 213 and now click on ‘Generate 

Features Vector’ button to convert above code 

into vector 

 
In above screen we can see all codes converted 

into vector where all words in codes will put as 

column header and the count of each word and 

its average values will put in rows and now 

vector is ready and now click on ‘Calculate 

Local Outlier Factor’ button to remove 

irrelevant columns/attributes 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 27



 
In above screen where ever we are seeing 1 that 

column in feature vector is important and where 

we are seeing -1 that column contains irrelevant 

attributes and now click on ‘Run KNN 

Algorithm’ and all other algorithm button to 

build machine learning model and then will get 

its prediction accuracy 

 
In above screen each algorithm evaluated on 

dataset and then we got above performance 

values such as accuracy, precision, recall and 

FMeasure and now click on ‘Comparison 

Graph’ button to get below graph 

 
In above graph we can see performance of each 

algorithm and in all algorithm random forest 

giving better result and now machine learning 

models are ready and now click on ‘Refactor 

Software Advisor’ button to get all code names 

which require refactor 

 
In above screen we got all class names which 

require refactor and now open first file called 

AnnotationBinding.java and see is there any 

duplicate code 

 
In above screen we can see in same program two 

functions are there with same code and different 

name as getKeys() in selected text and in next 

screen we have another method as getKey() 

 
getKeys() and getKeys() contains duplicate code 

so refactor require 

VII. CONCLUSION 

This paper suggests a learning method which 

automatically extracts features from the detected 

code clones and trains the models to advise the 

developers in regard to what a clone needs to be 

refactored and what is its type. We introduce a 

new method of converting clone type outliers 

into an Unknown clone to improve classification 

results. We present an extensive comparative 

study and perform an evaluation of the efficacy 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 28



of our suggested idea by using state-of-the- art 

classification models. • We present a new 
machine learning framework that automatically 

extracts features from the detected code clones 

and trains models to advise the developers on 

the type of refactored clone code and those 

which are not refactored. • We explore a new 

method by which to clone types of outliers into 

an Unknown clone from the training categories, 

which significantly improves the classification 

results. • We present an extensive comparative 
study and an evaluation of the efficacy of our 

suggested idea by using stateof-the-art 

classification models. We used four 

classification models to obtain their relative 

performance. The experimental results suggest 

that our approach has high value in achieving 

high automated advising refactored clone 

accuracy. In future, we would like to increase 

the scope of work to achieve additional 

improvements, for example, by using set 

classification and deep learning. 

 

 

REFERENCES 

[1] Y. Dang, S. Ge, R. Huang, and D. Zhang, 

‘‘Code clone detection experience at 

microsoft,’’ in Proc. 5th Int. Workshop Softw. 

Clones, 2011, pp. 63–64.  

[2] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. 

Wang, and J. D. Morgenthaler, ‘‘Automatic 

clone recommendation for refactoring based on 

the present and the past,’’ in Proc. IEEE Int. 

Conf. Softw. Maintenance Evol. (ICSME), Sep. 

2018, pp. 115–126.  

[3] S. Kodhai and S. Kanmani, ‘‘Method-level 

code clone modification using refactoring 

techniques for clone maintenance,’’ Adv. 

Comput. Int. J., vol. 4, no. 2, pp. 7–26, Mar. 

2013.  

[4] M. Kim, V. Sazawal, D. Notkin, and G. 

Murphy, ‘‘An empirical study of code clone 

genealogies,’’ ACM SIGSOFT Softw. Eng. 

Notes, vol. 30, no. 5, 2005, pp. 187–196.  

[5] N. Göde and R. Koschke, ‘‘Frequency and 

risks of changes to clones,’’ in Proc. 33rd Int. 

Conf. Softw. Eng., 2011, pp. 311–320.  

[6] W. Wang and M. W. Godfrey, 

‘‘Recommending clones for refactoring using 

design, context, and history,’’ in Proc. IEEE Int. 

Conf. Softw. Maintenance Evol., Sep. 2014, pp. 

331–340.  

[7] Y. Higo, T. Kamiya, S. Kusumoto, and K. 

Inoue, ‘‘Refactoring support based on code 

clone analysis,’’ in Proc. 135Int. Conf. Product 

Focused Softw. Process Improvement. Cham, 

Switzerland: Springer, 2004, pp. 220–233.  

[8] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, 

and K. Words, ‘‘ARIES: Refactoring support 

environment based on code clone analysis,’’ in 

Proc. IASTED Conf. Softw. Eng. Appl., 2004, 

pp. 222–229. 

[9] Y. Higo, S. Kusumoto, and K. Inoue, ‘‘A 

metric-based approach to identifying refactoring 

opportunities for merging code clones in a java 

software system,’’ J. Softw. Maintenance Evol. 

Res. Pract., vol. 20, no. 6, pp. 435–461, Nov. 

2008.  

[10] M. F. Zibran and C. K. Roy, ‘‘A constraint 

programming approach to conflict-aware 

optimal scheduling of prioritized code clone 

refactoring,’’ in Proc. IEEE 11th Int. Work. 

Conf. Source Code Anal. Manipulation, Sep. 

2011, pp. 105–114.  

[11] K. Hotta, Y. Higo, and S. Kusumoto, 

‘‘Identifying, tailoring, and suggesting form 

template method refactoring opportunities with 

program dependence graph,’’ in Proc. 16th Eur. 

Conf. Softw. Maintenance Reeng., Mar. 2012, 

pp. 53–62.  

[12] R. Tairas and J. Gray, ‘‘Increasing clone 

maintenance support by unifying clone detection 

and refactoring activities,’’ Inf. Softw. Technol., 

vol. 54, no. 12, pp. 1297–1307, Dec. 2012.  

[13] N. Tsantalis, D. Mazinanian, and G. P. 

Krishnan, ‘‘Assessing the refactorability of 

software clones,’’ IEEE Trans. Softw. Eng., vol. 

41, no. 11, pp. 1055–1090, Nov. 2015. 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 03, MAR, 2024

ISSN No: 2250-3676 www.ijesat.com Page 29


